We consider the Bogoliubov energy functional proposed by Napiórkowski, Reuvers and Solovej and analize it in the high density regime. We derive a two term asymptotic expansion of the ground state energy.

1.
Anderson
,
M. H.
,
Ensher
,
J. R.
,
Matthews
,
M. R.
,
Wieman
,
C. E.
, and
Cornell
,
E. A.
, “
Observation of Bose-Einstein condensation in a dilute atomic vapor
,”
Science
269
,
198
201
(
1995
).
2.
Basti
,
G.
,
Cenatiempo
,
S.
,
Giuliani
,
A.
,
Olgiati
,
A.
,
Pasqualetti
,
G.
, and
Schlein
,
B.
, “
Upper bound for the ground state energy of a dilute Bose gas of hard spheres
,” arXiv:2212.04431 [math-ph] (
2022
).
3.
Bogoliubov
,
N. N.
, “
On the theory of superfluidity
,”
J. Phys. (USSR)
11
,
23
(
1947
).
4.
Carlen
,
E.
,
Jauslin
,
I.
, and
Lieb
,
E. H.
, “
Analysis of a simple equation for the ground state energy of the Bose gas
,”
Pure Appl. Anal.
2
(
3
),
659
684
(
2020
).
5.
Carlen
,
E.
,
Holzmann
,
M.
,
Jauslin
,
I.
, and
Lieb
,
E. H.
, “
Simplified approach to the repulsive Bose gas from low to high densities and its numerical accuracy
,”
Phys. Rev. A
103
,
053309
(
2021
).
6.
Critchley
,
R. H.
and
Solomon
,
A.
, “
A variational approach to superfluidity
,”
J. Stat. Phys.
14
,
381
393
(
1976
).
7.
Davis
,
K. B.
,
Mewes
,
M. O.
,
Andrews
,
M. R.
,
van Druten
,
N. J.
,
Durfee
,
D. S.
,
Kurn
,
D. M.
, and
Ketterle
,
W.
, “
Bose-Einstein condensation in a gas of sodium atoms
,”
Phys. Rev. Lett.
75
,
3969
3973
(
1995
).
8.
Dereziński
,
J.
and
Napiórkowski
,
M.
, “
Excitation spectrum of interacting bosons in the mean-field infinite-volume limit
,”
Ann. Henri Poincaré
15
,
2409
2439
(
2014
).
9.
Fournais
,
S.
,
Napiórkowski
,
M.
,
Reuvers
,
R.
, and
Solovej
,
J. P.
, “
Ground state energy of a dilute two-dimensional Bose gas from the Bogoliubov free energy functional
,”
J. Math. Phys.
60
,
071903
(
2019
).
10.
Fournais
,
S.
and
Solovej
,
J. P.
, “
The energy of dilute Bose gases
,”
Ann. Math.
192
(
3
),
893
976
(
2020
).
11.
Girardeau
,
M.
and
Arnowitt
,
R.
, “
Theory of many-Boson systems: Pair theory
,”
Phys. Rev.
113
,
755
(
1959
).
12.
Haberberger
,
F.
,
Hainzl
,
C.
,
Nam
,
P. T.
,
Seiringer
,
R.
, and
Triay
,
A.
, “
The free energy of dilute Bose gases at low temperatures
,” arXiv:2304.02405 [math-ph] (
2023
).
13.
Jauslin
,
I.
, “
Review of a simplified Approach to study the Bose gas at all densities
,” in
The Physics and Mathematics of Elliott Lieb: The 90th Anniversary
(
EMS Press
,
2022
), Vol.
1
, pp.
609
635
.
14.
Landau
,
L.
, “
Theory of the superfluidity of helium II
,”
Phys. Rev.
60
,
356
358
(
1941
).
15.
Lieb
,
E. H.
, “
Simplified approach to the ground-state energy of an imperfect Bose gas
,”
Phys. Rev.
130
,
2518
2528
(
1963
).
16.
Nam
,
P. T.
and
Napiórkowski
,
M.
, “
Two-term expansion of the ground state one-body density matrix of a mean-field Bose gas
,”
Calc. Var.
60
,
99
(
2021
).
17.
Napiórkowski
,
M.
, “
Dynamics of interacting bosons: A compact review
,” in
Density Functionals for Many-Particle Systems - Mathematical Theory and Physical Applications of Effective Equations
(
World Scientific
,
2023
).
18.
Napiórkowski
,
M.
,
Reuvers
,
R.
, and
Solovej
,
J. P.
, “
The Bogoliubov free energy functional I: Existence of minimizers and phase diagram
,”
Arch. Ration. Mech. Anal.
229
(
3
),
1037
1090
(
2018
).
19.
Napiórkowski
,
M.
,
Reuvers
,
R.
, and
Solovej
,
J. P.
, “
The Bogoliubov free energy functional II: The dilute limit
,”
Commun. Math. Phys.
360
(
1
),
347
403
(
2018
).
20.
Napiórkowski
,
M.
,
Reuvers
,
R.
, and
Solovej
,
J. P.
, “
Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation
,”
Europhys. Lett.
121
(
1
),
010007
(
2018
).
21.
Oldenburg
,
J.
, “
On ground states of the Bogoliubov energy functional: A direct proof
,”
J. Math. Phys.
62
,
071902
(
2021
).
22.
Schlein
,
B.
, “
Bose gases in the Gross-Pitaevskii limit: A survey of some rigorous results
,” arXiv:2203.10855 [math-ph] (
2022
).
You do not currently have access to this content.