Toroidal Lie algebras are n variable generalizations of affine Kac-Moody Lie algebras. Full toroidal Lie algebra is the semidirect product of derived Lie algebra of toroidal Lie algebra and Witt algebra, also it can be thought of n-variable generalization of Affine-Virasoro algebras. Let h̃ be a Cartan subalgebra of a toroidal Lie algebra as well as full toroidal Lie algebra without containing the zero-degree central elements. In this paper, we classify the module structure on U(h̃) for all toroidal Lie algebras as well as full toroidal Lie algebras which are free U(h̃)-modules of rank 1. These modules exist only for type Al(l ≥ 1), Cl(l ≥ 2) toroidal Lie algebras and the same is true for full toroidal Lie algebras. Also, we determined the irreducibility condition for these classes of modules for both the Lie algebras.

1.
R.
Block
, “
The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra
,”
Adv. Math.
139
(
1
),
69
110
(
1981
).
2.
V.
Mazorchuk
,
Lectures on sl2(C)-Modules
(
Imperial College Press
,
London
,
2010
).
3.
E.
Cartan
, “
Les groups projectifs qui ne laissent invariante aucune multiplicite planet
,”
Bull. Soc. Math. France
41
,
53
96
(
1913
).
4.
J.
Dixmier
,
Enveloping Algebras
(
American Mathematical Society
,
1977
).
5.
J. E.
Humphreys
,
Representations of Semisimple Lie Algebras in BGG Category O
(
American Mathematical Society
,
2008
6.
I. N.
Bernstein
,
I. M.
Gelfand
, and
S. I.
Gelfand
, “
A certain category of g-modules
,”
Funkcional. Anal. i Prilozen
10
,
1
8
(
1976
).
7.
O.
Mathieu
, “
Classification of irreducible weight modules
,”
Ann. Instit. Fourier
50
(
2
),
537
592
(
2000
).
8.
B.
Kostant
, “
On Whittaker vectors and representation theory
,”
Invent. Math.
48
(
2
),
101
184
(
1978
).
9.
Yu.
Drozd
,
S.
Ovsienko
, and
V.
Futorny
, “
On Gelfand–Zetlin modules
,” in
Proceedings of the Winter School on Geometry and Physics
,
Srni
,
1990
, Rend. Circ. Mat. Palermo (2), vol. 26, 1991, pp. 143–147.
10.
V. G.
Kac
, “
Infinite-dimensional Lie algebras and Dedekind’s η-function
,”
Funkt. Anal. Prilozh.
8
(
1
),
77
78
(
1974
), [English translation Funct. Anal. Appl. 8 (1974) 68–70].
11.
V. G.
Kac
and
A.
Raina
,
Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras
(
World Scientific
,
Singapore
,
1987
).
12.
J.
Lepowsky
and
H.
Li
,
Introduction to Vertex Operator Algebras and Their Representations
,
Progress in Mathematics
(
Birkhauser Boston, Inc.
,
Boston
,
2004
), Vol.
227
.
13.
R.
Blumenhagen
and
E.
Plauschinn
,
Introduction to Conformal Field Theory: With Applications to String Theory
,
Lect. Notes Phys.
(
Springer
,
Berlin, Heidelberg
,
2009
), Vol.
779
.
14.
V. G.
Kac
,
Infinite Dimensional Lie Algebras
(
Cambridge University Press
,
1990
).
15.
V.
Chari
, “
Integrable representations of affine Lie-algebras
,”
Invent. Math.
85
,
317
335
(
1986
).
16.
V.
Chari
and
A.
Pressley
, “
Integrable representations of twisted affine Lie algebras
,”
J. Algebra
113
,
438
464
(
1988
).
17.
H. P.
Jakobsen
and
V. G.
Kac
, “
A new class of unitarizable highest weight representations of infi- nite dimensional Lie algebras
,” in
Nonlinear Equations in Classical and Quantum Field Theory, Meudon/Paris 1983/1984
,
Lecture Notes in Phys.
(
Springer
,
Berlin
,
1985
), Vol.
226
, p.
120
.
18.
V.
Futorny
, “
Irreducible non-dense A(1)1-modules
,”
Pac. J. Math.
172
,
83
99
(
1996
).
19.
V.
Futorny
,“
Representations of affine Lie algebras
,” in
Queens Papers in Pure and Appl. Math.
(
Queens University
,
Kingston, ON
,
1997
), Vol.
106
.
20.
V.
Futorny
and
A.
Tsylke
, “
Classification of irreducible nonzero level modules with finite-dimensional weight spaces for affine Lie algebras
,”
J. Algebra
238
,
426
441
(
2001
).
21.
I.
Dimitrov
and
D.
Grantcharov
, “
Classification of simple weight modules over affine Lie algebras
,” arXiv:0910.0688v1 (
2009
).
22.
V.
Chari
and
A.
Pressley
, “
A new family of irreducible, integrable modules for affine Lie algebras
,”
Math. Ann.
277
(
3
),
543
562
(
1987
).
23.
V.
Bekkert
,
G.
Benkart
,
V.
Futorny
, and
I.
Kashuba
, “
New irreducible modules for Heisenberg and affine Lie algebras
,”
J. Algebra
373
,
284
298
(
2013
).
24.
V.
Futorny
and
I.
Kashuba
, “
Structure of parabolically induced modules for affine Kac-Moody algebras
,”
J. Algebra
500
,
362
374
(
2018
).
25.
V.
Mazorchuk
and
K.
Zhao
, “
Characterization of simple highest weight modules
,”
Can. Math. Bull.
56
(
3
),
606
614
(
2013
).
26.
J.
Nilsson
, “
Simple sln+1-module structures on U(h)
,”
J. Algebra
424
,
294
329
(
2015
).
27.
J.
Nilsson
, “U(h)
-free modules and coherent families
,”
J. Pure Appl. Algebra
220
(
4
),
1475
1488
(
2016
).
28.
Y. A.
Cai
,
H.
Tan
, and
K.
Zhao
, “
New representations of affine Kac-Moody algebras
,”
J. Algebra
547
,
95
115
(
2020
).
29.
H.
Tan
and
K.
Zhao
, “Wn+
- and Wn-module structures on U(hn)
,”
J. Algebra
424
,
357
375
(
2015
).
30.
Q.
Chen
and
J.
Han
, “
Non-weight modules over the affine-Virasoro algebra of type A1
,”
J. Math. Phys.
60
,
071707
(
2019
).
31.
J.
Zhang
, “
Non-weight representations of Cartan type S Lie algebras
,”
Commun. Algebra
46
(
10
),
4243
4264
(
2018
).
32.
X.
Zhu
, “
Simple modules over the Takiff Lie algebra for sl2
,”
J. Math. Phys.
65
,
011701
(
2024
).
33.
P.
Chakraborty
, “
Irreducible modules for map Heisenberg-Virasoro Lie algebras
,” arXiv:2311.02635 (
2023
).
34.
S. E.
Rao
, “
Classification of irreducible integrable modules for toroidal Lie algebras with finite-dimensional weight spaces
,”
J. Algebra
277
(
1
),
318
348
(
2004
).
35.
E. S.
Rao
and
C.
Jiang
, “
Classification of irreducible integrable representations for the full toroidal Lie algebras
,”
J. Pure Appl. Algebra
200
,
71
85
(
2005
).
36.
E. S.
Rao
,
R. V.
Moody
, and
T.
Yokonuma
, “
Toroidal Lie algebras and vertex representations
,”
Geom. Dedicata
35
,
283
307
(
1990
).
37.
C.
Kassel
, “
Kähler differentials and coverings of complex simple lie algebras extended over a commutative algebra
,”
J. Pure Appl. Algebra
34
,
265
275
(
1984
).
38.
S.
Berman
and
Y.
Billig
, “
Irreducible representations for toroidal Lie algebras
,”
J. Algebra
221
,
188
231
(
1999
).
39.
Y. A.
Cai
,
H.
Tan
, and
K.
Zhao
, “
Module structures on U(h) for Kac-Moody algebras
,”
Sci. Sin. Math.
47
(
11
),
1491
1514
(
2017
), arXiv:1606.01891.
40.
H.
Tan
and
K.
Zhao
, “
Irreducible modules over Witt algebras Wn and over sln+1(C)
,”
Algebras Representation Theory
21
(
4
) (
2018
),
787
806
.
You do not currently have access to this content.