Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted reconfigurations of the internal structures of the seed resonators, the dynamical matrices of the materials generate the full self-adjoint sector of the stabilized group C*-algebra of the frieze group. As a consequence, in applications where the positions, orientations and internal structures of the seed resonators are adiabatically modified, the spectral bands of the dynamical matrices carry a complete set of topological invariants that are fully accounted by the K-theory of the mentioned algebra. By resolving the generators of the K-theory, we produce the model dynamical matrices that carry the elementary topological charges, which we implement with systems of plate resonators to showcase several applications in spectral engineering. The paper is written in an expository style.

1.
Aparicio
,
M. P. G.
,
Julg
,
P.
, and
Valette
,
A.
, “
The Baum–Connes conjecture: An extended survey
,” in
Advances in Noncommutative Geometry
, edited by
Chamseddine
,
A.
et al. (
Springer
,
Berlin
,
2019
).
2.
Barlas
,
Y.
and
Prodan
,
E.
, “
Topological classification table implemented with classical passive metamaterials
,”
Phys. Rev. B
98
,
094310
(
2018
).
3.
Baum
,
P.
and
Connes
,
A.
,
Geometric K-Theory for Lie Groups and Foliations
(
Brown University; IHES Preprint
,
1982
).
4.
Baum
,
P.
and
Connes
,
A.
, “
K-theory for discrete groups
,” in
Operator Algebras and Applications
, edited by
Evans
,
D.
and
Takesaki
,
M.
(
Cambridge University Press
,
1988
), pp.
1
20
.
5.
Baum
,
P.
and
Connes
,
A.
,
Chern Character for Discrete Groups
,
A Fete of Topology
(
North Holland
,
Amsterdam
,
1987
), pp.
163
232
.
6.
Baum
,
P.
,
Connes
,
A.
, and
Higson
,
N.
, “
Classifying space for proper actions and K-theory of group C*-algebras
,”
Contemp. Math.
167
,
241
291
(
1994
).
7.
Baum
,
P.
and
Connes
,
A.
, “
Geometric K-theory for Lie groups and foliations
,”
Enseign. Math.
46
,
3
42
(
2000
).
8.
Bellissard
,
J.
, “
K-theory of C*—Algebras in solid state physics
,”
Lect. Notes Phys.
257
,
99
156
(
1986
).
9.
Bellissard
,
J.
,
van Elst
,
A.
, and
Schulz-Baldes
,
H.
, “
The noncommutative geometry of the quantum Hall effect
,”
J. Math. Phys.
35
,
5373
5451
(
1994
).
10.
Bellissard
,
J.
, “
Gap labeling theorems for Schrödinger operators
,” in
From Number Theory to Physics
, edited by
Waldschmidt
,
M.
,
Moussa
,
P.
,
Luck
,
J.-M.
, and
Itzykson
,
C.
(
Springer
,
Berlin
,
1995
).
11.
Bellissard
,
J.
,
Herrmann
,
D. J. L.
, and
Zarrouati
,
M.
, “
Hulls of aperiodic solids and gap labelling theorems
,” in
Directions in Mathematical Quasicrystals
,
CIRM Monograph Series Vol. 13
(
AMS
,
2000
), pp.
207
259
.
12.
Bellissard
,
J.
, “
Noncommutative geometry of aperiodic solids
,” in
Geometric and Topological Methods for Quantum Field Theory
, edited by
Ocampo
,
H.
,
Pariguan
,
E.
, and
Paycha
,
S.
(
World Scientific Publishing
,
River Edge
,
2003
).
13.
Blackadar
,
B.
,
K-Theory for Operator Algebras
, 2nd ed.,
Mathematical Sciences Research Institute Publications Vol. 5
(
Cambridge University Press
,
Cambridge
,
1998
).
14.
Bradlyn
,
B.
,
Elcoro
,
L.
,
Cano
,
J.
,
Vergniory
,
M. G.
,
Wang
,
Z.
,
Felser
,
C.
,
Aroyo
,
M. I.
, and
Bernevig
,
B. A.
, “
Topological quantum chemistry
,”
Nature
547
,
298
305
(
2017
).
15.
Cano
,
J.
,
Bradlyn
,
B.
,
Wang
,
Z.
,
Elcoro
,
L.
,
Vergniory
,
M. G.
,
Felser
,
C.
,
Aroyo
,
M. I.
, and
Bernevig
,
B. A.
, “
Building blocks of topological quantum chemistry: Elementary band representations
,”
Phys. Rev. B
97
,
035139
(
2018
).
16.
Conway
,
J. H.
,
Burgiel
,
H.
, and
Goodman-Strauss
,
C.
,
Symmetries of Things
(
CRC Press
,
Boca Raton
,
2016
).
17.
Cuntz
,
J.
, “
The K-groups for free products of C*-algebras
,” in
Operator Algebras and Applications
,
Proceedings of Symposia in Pure Mathematics Vol. 38
, edited by
Kadison
,
R. V.
(
AMS
,
1982
).
18.
Cuntz
,
J.
, “
A new look at KK-theory
,”
K-Theory
1
,
31
51
(
1987
).
19.
Cuntz
,
J.
, “
Bivariant K-and cyclic theories
,” in
Handbook of K-Theory
, edited by
Friedlander
,
E. M.
and
Grayson
,
D. R.
(
Springer
,
Berlin
,
2005
).
20.
Davidson
,
K. R.
,
C*-algebras by Example
(
AMS
,
Providence
,
1996
).
21.
Davis
,
J. F.
and
Lück
,
W.
, “
Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory
,”
K-Theory
15
,
201
252
(
1998
).
22.
Elcoro
,
L.
,
Wieder
,
B. J.
,
Song
,
Z.
,
Xu
,
Y.
,
Bradlyn
,
B.
, and
Bernevig
,
B. A.
, “
Magnetic topological quantum chemistry
,”
Nat. Commun.
12
,
5965
(
2021
).
23.
Echterhoff
,
S.
,
Lück
,
W.
,
Phillips
,
N. C.
, and
Walters
,
S.
, “
The structure of crossed products of irrational rotation algebras by finite subgroups of SL2(Z)
,”
J. Reine Angew. Math.
638
,
173
221
(
2010
).
24.
Freed
,
D. S.
and
Moore
,
G. W.
, “
Twisted equivariant matter
,”
Ann. Henri Poincaré
14
,
1927
2023
(
2013
).
25.
Fu
,
L.
, “
Topological crystalline insulators
,”
Phys. Rev. Lett.
106
,
106802
(
2011
).
26.
Gomi
,
K.
, “
Twists on the torus equivariant under the 2-dimensional crystallographic point groups
,”
Symmetry, Integrability Geom.: Methods Appl.
13
,
014
(
2017
).
27.
Gomi
,
K.
and
Thiang
,
G. C.
, “
Crystallographic bulk-edge correspondence: Glide reflections and twisted mod 2 indices
,”
Lett. Math. Phys.
109
,
857
904
(
2019
).
28.
Gomi
,
K.
and
Thiang
,
G. C.
, “
Crystallographic T-duality
,”
J. Geom. Phys.
139
,
50
77
(
2019
).
29.
Gomi
,
K.
,
Kubota
,
Y.
, and
Thiang
,
G. C.
, “
Twisted crystallographic T-duality via the Baum–Connes isomorphism
,”
Int. J. Math.
32
,
2150078
(
2021
).
30.
Hadfield
,
T.
, “
Fredholm modules over certain group C*-algebras
,”
J. Operator Theory
51
,
141
160
(
2004
).
31.
Higson
,
N.
and
Kasparov
,
G.
, “
Operator K-theory for groups which act properly and isometrically on Hilbert space
,”
Electron. Res. Announce. Am. Math. Soc.
3
,
131
142
(
1997
).
32.
Hughes
,
T. L.
,
Prodan
,
E.
, and
Bernevig
,
B. A.
, “
Inversion-symmetric topological insulators
,”
Phys. Rev. B
83
,
245132
(
2011
).
33.
Kasparov
,
G. G.
, “
The operator K-functor and extensions of C*-Alegebras
,”
Math. USSR-Izv.
16
,
513
572
(
1981
).
34.
Kasparov
,
G. G.
, “
Operator K-theory and its applications
,”
J. Sov. Math.
37
,
1373
1396
(
1987
).
35.
Kellendonk
,
J.
, “
Noncommutative geometry of tilings and gap labelling
,”
Rev. Math. Phys.
07
,
1133
1180
(
1995
).
36.
Lück
,
W.
, “
Chern characters for proper equivariant homology theories and applications to K- and L-theory
,”
J. Reine Angew. Math.
2002
,
193
234
.
37.
Lück
,
W.
and
Stamm
,
R.
, “
Computations of K- and L-theory of cocompact planar groups
,”
K-Theory
21
(
3
),
249
292
(
2000
).
38.
McAlister
,
E. A.
, “
Noncommutative CW-complexes arising from crystallographic groups and their K-theory
,” Ph.D. thesis,
University of Colorado
,
Boulder
,
2005
.
39.
Mesland
,
B.
and
Prodan
,
E.
, “
Classifying the dynamics of architected materials by groupoid methods
,”
J. Geom. Phys.
196
,
105059
(
2024
).
40.
Mislin
,
G.
,
Proper Group Actions and the Baum-Connes Conjecture
(
Birkhäuser
,
Basel
,
2003
).
41.
Moore
,
D. B.
,
Starkey
,
T. A.
, and
Chaplain
,
G. J.
, “
Acoustic metasurfaces with Frieze symmetries
,”
J. Acoust. Soc. Am.
155
,
568
574
(
2024
).
42.
Nassopoulos
,
G. F.
, “
A functorial approach to group C*-algebras
,”
Int. J. Contemp. Math. Sci.
3
,
1095
1102
(
2008
).
43.
Po
,
H. C.
,
Vishwanath
,
A.
, and
Watanabe
,
H.
, “
Symmetry-based indicators of band topology in the 230 space groups
,”
Nat. Commun.
8
,
50
(
2017
).
44.
Serre
,
J.-P.
,
Linear Representations of Finite Groups
(
Springer
,
Berlin
,
1977
).
45.
Shiozaki
,
K.
and
Sato
,
M.
, “
Topology of crystalline insulators and superconductors
,”
Phys. Rev. B
90
,
165114
(
2014
).
46.
Shiozaki
,
K.
,
Sato
,
M.
, and
Gomi
,
K.
, “
Topology of nonsymmorphic crystalline insulators and superconductors
,”
Phys. Rev. B
93
,
195413
(
2016
).
47.
Shiozaki
,
K.
,
Sato
,
M.
, and
Gomi
,
K.
, “
Topological crystalline materials: General formulation, module structure, and wallpaper groups
,”
Phys. Rev. B
95
,
235425
(
2017
).
48.
Shiozaki
,
K.
,
Xiong
,
C. Z.
, and
Gomi
,
K.
, “
Generalized homology and Atiyah–Hirzebruch spectral sequence in crystalline symmetry protected topological phenomena
,”
Prog. Theor. Exp. Phys.
2023
,
083I01
.
49.
Shiozaki
,
K.
and
Ono
,
S.
, “
Atiyah-Hirzebruch spectral sequence for topological insulators and superconductors: E2 pages for 1651 magnetic space groups
,” arXiv:2304.01827 (
2023
).
50.
Turner
,
A. M.
,
Zhang
,
Y.
, and
Vishwanath
,
A.
, “
Entanglement and inversion symmetry in topological insulators
,”
Phys. Rev. B
82
,
241102
(
2010
).
51.
Vergniory
,
M. G.
,
Elcoro
,
L.
,
Wang
,
Z.
,
Cano
,
J.
,
Felser
,
C.
,
Aroyo
,
M. I.
,
Bernevig
,
B. A.
, and
Bradlyn
,
B.
, “
Graph theory data for topological quantum chemistry
,”
Phys. Rev. E
96
,
023310
(
2017
).
52.
Vergniory
,
M. G.
,
Elcoro
,
L.
,
Felser
,
C.
,
Regnault
,
N.
,
Bernevig
,
B. A.
, and
Wang
,
Z.
, “
A complete catalogue of high-quality topological materials
,”
Nature
566
,
480
485
(
2019
).
53.
Vergniory
,
M. G.
,
Wieder
,
B. J.
,
Elcoro
,
L.
,
Parkin
,
S. S. P.
,
Felser
,
C.
,
Bernevig
,
B. A.
, and
Regnault
,
N.
, “
All topological bands of all nonmagnetic stoichiometric materials
,”
Science
376
,
816
(
2022
).
54.
Wieder
,
B. J.
,
Bradlyn
,
B.
,
Wang
,
Z.
,
Cano
,
J.
,
Kim
,
Y.
,
Kim
,
H.-S. D.
,
Rappe
,
A. M.
,
Kane
,
C. L.
, and
Bernevig
,
B. A.
, “
Wallpaper fermions and the nonsymmorphic Dirac insulator
,”
Science
361
,
246
251
(
2018
).
55.
Wieder
,
B. J.
,
Bradlyn
,
B.
,
Cano
,
J.
,
Wang
,
Z.
,
Vergniory
,
M. G.
,
Elcoro
,
L.
,
Soluyanov
,
A. A.
,
Felser
,
C.
,
Neupert
,
T.
,
Regnault
,
N.
, and
Bernevig
,
B. A.
, “
Topological materials discovery from crystal symmetry
,”
Nat. Rev. Mater.
7
,
196
(
2021
).
56.
Yang
,
M.
, “
Crossed products by finite groups acting on low dimensional complexes and applications
,” Ph.D. thesis,
University of Saskatchewan
,
Saskatoon
,
1997
.
57.

Stabilization means tensoring with the algebra K of compact operators over a separable Hilbert space.

58.

Notably, the reduction of the crossed products to Morita equivalent (étale) groupoid C*-algebras.

59.

Stably isomorphic algebras are said to be Morita equivalent.

60.

COMSOL Multiphysics is a widely adopted commercial platform for finite element analysis, known to produce reliable simulations of continuous mechanics models.

61.

This is entirely sufficient in our case.

You do not currently have access to this content.