In this paper we prove that the static solution of the Cauchy problem for a massless real scalar field that is sourced by a point charge in 1 + 1 dimensions is asymptotically stable under perturbation by compactly-supported radiation. This behavior is due to the process of back-reaction. Taking the approach of Kiessling, we rigorously derive the expression for the force on the particle from the principle of total energy-momentum conservation. We provide a simple, closed form for the particle’s self-action, and show that it is restorative in this model, i.e. proportional to negative velocity, and causes the charge to return to rest after the radiation passes through. We establish these results by studying the joint evolution problem for the particle-scalar field system, and proving its global well-posedness and the claimed asymptotic behavior.

1.
Agashe
,
A.
,
Lee
,
E.
, and
Tahvildar-Zadeh
,
A. S.
, “
On the joint evolution problem for a scalar field and its singularity
,”
Involve, J. Math.
17
(
1
),
163
182
(
2024
).
2.
Bopp
,
F.
, “
Eine lineare theorie des elektrons
,”
Ann. Phys.
430
,
345
384
(
2006
).
3.
Bopp
,
F.
, “
Lineare theorie des elektrons. II
,”
Ann. Phys.
434
,
573
608
(
2006
).
4.
Carley
,
H. K.
and
Kiessling
,
M. K.-H.
,
A Study of the Radiation-Reaction on a Point Charge that Moves Along a Constant Applied Electric Field in an Electromagnetic Bopp-Landé-Thomas-Podolsky Vacuum
(
Springer International Publishing
,
Cham
,
2024
), pp.
323
336
.
5.
Deckert
,
D.-A.
and
Hartenstein
,
V.
, “
On the initial value formulation of classical electrodynamics
,”
J. Phys. A: Math. Theor.
49
(
44
),
445202
(
2016
).
6.
Dirac
,
P. A. M.
, “
Classical theory of radiating electrons
,”
Proc. R. Soc. London, Ser. A
167
,
148
169
(
1938
).
7.
Frolov
,
L.
,
Lee
,
E.
, and
Tahvildar-Zadeh
,
A. S.
, “
Joint evolution of a Lorentz-covariant massive scalar field and its point charge source in one space dimension
” (unpublished) (
2024
).
8.
Hoang
,
V.
,
Radosz
,
M.
,
Harb
,
A.
,
DeLeon
,
A.
, and
Baza
,
A.
, “
Radiation reaction in higher-order electrodynamics
,”
J. Math. Phys.
62
(
7
),
072901
(
2021
).
9.
Kiessling
,
M. K.-H.
, “
Force on a point charge source of the classical electromagnetic field
,”
Phys. Rev. D
100
,
065012
(
2019
).
10.
Kiessling
,
M. K.-H.
, “
Erratum: Force on a point charge source of the classical electromagnetic field [Phys. Rev. D 100, 065012 (2019)]
,”
Phys. Rev. D
101
,
109901
(
2020
).
11.
Kiessling
,
M. K.-H.
and
Tahvildar-Zadeh
,
A. S.
, “
Bopp-Landé Thomas-Podolsky electrodynamics as initial value problem
,” (unpublished) (
2023
).
12.
Komech
,
A. I.
and
Kopylova
,
E. A.
, “
Attractors of nonlinear Hamiltonian partial differential equations
,”
Russ. Math. Surv.
75
(
1
),
1
(
2020
).
13.
Landé
,
A.
, “
Finite self-energies in radiation theory. Part I
,”
Phys. Rev.
60
,
121
127
(
1941
).
14.
Landé
,
A.
and
Thomas
,
L. H.
, “
Finite self-energies in radiation theory. Part II
,”
Phys. Rev.
60
,
514
523
(
1941
).
15.
Max
,
A.
,
Theorie der Elektrizität, Vol II: Elektromagnetische Theorie der Strahlung
(
Teubner
,
1905
).
16.
Podolsky
,
B.
, “
A generalized electrodynamics Part I—Non-quantum
,”
Phys. Rev.
62
,
68
71
(
1942
).
17.
Poincaré
,
M. H.
, “
Sur la dynamique de l’électron
,”
Rend. Circolo Mat. Palermo
21
,
129
175
(
1906
).
18.
Poisson
,
E.
,
Pound
,
A.
, and
Vega
,
I.
, “
The motion of point particles in curved spacetime
,”
Living Rev. Relativ.
14
,
7
(
2011
).
19.
Spohn
,
H.
,
Dynamics of Charged Particles and their Radiation Field
(
Cambridge University Press
,
2004
).
20.
Weyl
,
H.
, “
Feld und materie
,”
Ann. Phys.
370
,
541
563
(
1921
).
You do not currently have access to this content.