We consider the question of whether the high-energy eigenfunctions of certain Schrödinger operators on the d-dimensional hyperbolic space of constant curvature −κ2 are flexible enough to approximate an arbitrary solution of the Helmholtz equation Δh + h = 0 on Rd, over the natural length scale O(λ1/2) determined by the eigenvalue λ ≫ 1. This problem is motivated by the fact that, by the asymptotics of the local Weyl law, approximate Laplace eigenfunctions do have this approximation property on any compact Riemannian manifold. In this paper we are specifically interested in the Coulomb and harmonic oscillator operators on the hyperbolic spaces Hd(κ). As the dimension of the space of bound states of these operators tends to infinity as κ ↘ 0, one can hope to approximate solutions to the Helmholtz equation by eigenfunctions for some κ > 0 that is not fixed a priori. Our main result shows that this is indeed the case, under suitable hypotheses. We also prove a global approximation theorem with decay for the Helmholtz equation on manifolds that are isometric to the hyperbolic space outside a compact set, and consider an application to the study of the heat equation on Hd(κ). Although global approximation and inverse approximation results are heuristically related in that both theorems explore flexibility properties of solutions to elliptic equations on hyperbolic spaces, we will see that the underlying ideas behind these theorems are very different.

1.
L.
Hormander
, “
The spectral function of an elliptic operator
,”
Acta Math.
121
,
193
218
(
1968
).
2.
Y.
Canzani
and
B.
Hanin
, “
Scaling limit for the kernel of the spectral projector and remainder estimates in the pointwise Weyl law
,”
Anal. PDE
8
,
1707
1731
(
2015
).
3.
Y.
Canzani
and
P.
Sarnak
, “
Topology and nesting of the zero set components of monochromatic random waves
,”
Commun. Pure Appl. Math.
72
,
343
374
(
2019
).
4.
J.
Jung
and
S.
Zelditch
, “
Boundedness of the number of nodal domains for eigenfunctions of generic Kaluza–Klein 3-folds
,”
Ann. Inst. Fourier
70
,
971
1027
(
2020
).
5.
A.
Enciso
,
A.
García-Ruiz
, and
D.
Peralta-Salas
, “
Localization properties of high-energy eigenfunctions on flat tori
,”
Int. Math. Res. Not.
2023
,
20988
21014
.
6.
A.
Enciso
,
D.
Hartley
, and
D.
Peralta-Salas
, “
A problem of Berry and knotted zeros in the eigenfunctions of the harmonic oscillator
,”
J. Eur. Math. Soc.
20
,
301
314
(
2018
).
7.
A.
Enciso
,
D.
Peralta-Salas
, and
F.
Torres de Lizaur
, “
High-Energy eigenfunctions of the Laplacian on the torus and the sphere with nodal sets of complicated topology
,”
Nonlinear Partial Differ. Equ. Future Appl.
346
,
245
261
(
2021
).
8.
A.
Enciso
,
D.
Hartley
, and
D.
Peralta-Salas
, “
Dislocations of arbitrary topology in Coulomb eigenfunctions
,”
Rev. Mat. Iberoam.
34
,
1361
1371
(
2018
).
9.
A.
Enciso
,
D.
Peralta-Salas
, and
F.
Torres de Lizaur
, “
Knotted structures in high-energy Beltrami fields on the torus and the sphere
,”
Ann. Sci. Ec. Norm. Super.
50
,
995
1016
(
2017
).
10.
M.
Berry
, “
Knotted zeros in the quantum states of hydrogen
,”
Found. Phys.
31
,
659
667
(
2001
).
11.
K.
Uhlenbeck
, “
Generic properties of eigenfunctions
,”
Am. J. Math.
98
,
1059
1078
(
1976
).
12.
A. V.
Shchepetilov
, “
Comment on ‘Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere S2 and the hyperbolic plane H2’ [J. Math. Phys. 46, 052702 (2005)] and the hyperbolic plane
,”
J. Math. Phys.
46
,
114101
(
2005
).
13.
A.
Ballesteros
,
A.
Enciso
,
F. J.
Herranz
, and
O.
Ragnisco
, “
Hamiltonian systems admitting a Runge–Lenz vector and an optimal extension of Bertrand’s theorem to curved manifolds
,”
Commun. Math. Phys.
290
,
1033
1049
(
2009
).
14.
A.
Enciso
and
D.
Peralta-Salas
, “
Existence of knotted vortex tubes in steady Euler flows
,”
Acta Math.
214
,
61
134
(
2015
).
15.
F.
Browder
, “
Approximation by solutions of partial differential equations
,”
Am. J. Math.
84
,
134
160
(
1962
).
16.
A.
Enciso
,
M. A.
García-Ferrero
, and
D.
Peralta-Salas
, “
Approximation theorems for parabolic equations and movement of local hot spots
,”
Duke Math. J.
168
,
897
939
(
2019
).
17.
A.
Enciso
and
D.
Peralta-Salas
, “
Bounded solutions to the Allen–Cahn equation with level sets of any compact topology
,”
Anal. PDE
9
,
1433
1446
(
2016
).
18.
C.
Quesne
, “
Quantum oscillator and Kepler–Coulomb problems in curved spaces: Deformed shape invariance, point canonical transformations, and rational extensions
,”
J. Math. Phys.
57
,
102101
(
2016
).
19.
L. C.
Evans
,
Partial Differential Equations
(
AMS
,
New York
,
1998
).
20.
D.
Gilbarg
and
N. S.
Trudinger
,
Elliptic Partial Differential Equations of Second Order
(
Springer
,
Berlin
,
2015
).
21.
G.
Szego
,
Orthogonal Polynomials
(
AMS
,
New York
,
1959
).
22.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
1965
).
23.
F.
Browder
, “
The Dirichlet and vibration problems for linear elliptic differential equations of arbitrary order
,”
Proc. Natl. Acad. Sci. U. S. A.
38
,
741
747
(
1952
).
24.
P. A.
Perry
, “
The Laplace operator on a hyperbolic manifold I. Spectral and scattering theory
,”
J. Funct. Anal.
75
,
161
187
(
1987
).
25.
E. B.
Davies
and
N.
Mandouvalos
, “
Heat kernel bounds on hyperbolic space and Kleinian groups
,”
Proc. London Math. Soc.
s3-57
,
182
208
(
1988
).
26.
A.
Grigor’yan
and
M.
Noguchi
, “
The heat kernel on hyperbolic space
,”
Bull. London Math. Soc.
30
,
643
650
(
1998
).
27.
M.
Murata
, “
Uniqueness and nonuniqueness of the positive Cauchy problem for the heat equation on Riemannian manifolds
,”
Proc. Am. Math. Soc.
123
,
1923
1932
(
1995
).
You do not currently have access to this content.