Given an algebra in a monoidal 2-category, one can construct a 2-category of right modules. Given a braided algebra in a braided monoidal 2-category, it is possible to refine the notion of right module to that of a local module. Under mild assumptions, we prove that the 2-category of local modules admits a braided monoidal structure. In addition, if the braided monoidal 2-category has duals, we go on to show that the 2-category of local modules also has duals. Furthermore, if it is a braided fusion 2-category, we establish that the 2-category of local modules is a braided multifusion 2-category. We examine various examples. For instance, working within the 2-category of 2-vector spaces, we find that the notion of local module recovers that of braided module 1-category. Finally, we examine the concept of a Lagrangian algebra, that is a braided algebra with trivial 2-category of local modules. In particular, we completely describe Lagrangian algebras in the Drinfeld centers of fusion 2-categories, and we discuss how this result is related to the classifications of topological boundaries of (3 + 1)d topological phases of matter.

1.
B.
Pareigis
, “
On braiding and dyslexia
,”
J. Algebra
171
,
413
425
(
1995
).
2.
P.
Schauenburg
, “
The monoidal center construction and bimodules
,”
J. Pure Appl. Algebra
158
,
325
346
(
2001
).
3.
A.
Kirillov
, Jr.
and
V.
Ostrik
, “
On q-analog of McKay correspondence and ADE classification of sl2 conformal field theories
,”
Adv. Math.
171
,
183
227
(
2002
).
4.
J.
Böckenhauer
,
D. E.
Evans
, and
Y.
Kawahigashi
, “
On α-induction, chiral generators and modular invariants for subfactors
,”
Commun. Math. Phys.
208
,
429
487
(
1999
).
5.
A.
Davydov
,
M.
Müger
,
D.
Nikshych
, and
V.
Ostrik
, “
The Witt group of non-degenerate braided fusion categories
,”
J. Reine Angew. Math.
2013
,
135
177
.
6.
A.
Davydov
,
D.
Nikshych
, and
V.
Ostrik
, “
On the structure of the Witt group of braided fusion categories
,”
Sel. Math.
19
,
237
269
(
2013
).
7.
C. L.
Douglas
and
D. J.
Reutter
, “
Fusion 2-categories and a state-sum invariant for 4-manifolds
,” arXiv: 1812.11933 (
2018
).
8.
T. D.
Décoppet
, “
Finite semisimple module 2-categories
,” arXiv:2107.11037 (
2021
).
9.
T. D.
Décoppet
, “
Rigid and separable algebras in fusion 2-categories
,”
Adv. Math.
419
,
108967
(
2023
).
10.
T. D.
Décoppet
, “
The Morita theory of fusion 2-categories
,”
Higher Struct.
7
,
234
292
(
2023
).
11.
T. D.
Décoppet
, “
Drinfeld centers and Morita equivalence classes of fusion 2-categories
,” arXiv:2211.04917 (
2022
).
12.
T. D.
Décoppet
and
M.
Yu
, “
Gauging noninvertible defects: A 2-categorical perspective
,”
Lett. Math. Phys.
113
,
36
(
2023
).
13.
T.
Johnson-Freyd
and
D. J.
Reutter
, “
Minimal non-degenerate extensions
,”
J. Am. Math. Soc.
37
,
81
(
2023
).
14.
F. A.
Bais
,
B. J.
Schroers
, and
J. K.
Slingerland
, “
Broken quantum symmetry and confinement phases in planar physics
,”
Phys. Rev. Lett.
89
,
181601
(
2002
).
15.
A. F.
Bais
,
B. J.
Schroers
, and
J. K.
Slingerland
, “
Hopf symmetry breaking and confinement in (2 + 1)-dimensional gauge theory
,”
J. High Energy Phys.
2003
,
068
.
16.
L.
Kong
, “
Anyon condensation and tensor categories
,”
Nucl. Phys. B
866
,
436
(
2014
).
17.
J.
Zhao
,
J.-Q.
Lou
,
Z.-H.
Zhang
,
L.-Y.
Hung
,
L.
Kong
, and
Y.
Tian
, “
String condensations in 3 + 1D and Lagrangian algebras
,”
Adv. Theor. Math. Phys.
27
(
2
),
583
622
(
2023
).
18.
R.
Garner
and
M.
Shulman
, “
Enriched categories as a free cocompletion
,”
Adv. Math.
289
,
1
94
(
2016
).
19.
K. P.
Pomoroski
, “
On braided monoidal 2-categories
,” Ph.D. thesis,
Ohio University
,
2022
.
20.
A.
Davydov
and
D.
Nikshych
, “
Braided Picard groups and graded extensions of braided tensor categories
,”
Sel. Math.
27
,
65
(
2021
).
21.
C. J.
Schommer-Pries
, “
The classification of two-dimensional extended topological field theories
,” Ph.D. thesis,
UC Berkeley
,
2011
.
22.
N.
Gurski
, “
Coherence in three-dimensional category theory
,”
Cambridge Tracts in Mathematics
(
Cambridge University Press
,
2013
).
23.
N.
Gurski
, “
Loop spaces, and coherence for monoidal and braided monoidal bicategories
,”
Adv. Math.
226
,
4225
4265
(
2011
).
24.
T. D.
Décoppet
, “
Compact semisimple 2-categories
,”
Trans. Amer. Math. Soc.
376
,
8309
8336
(
2023
).
25.
T. D.
Décoppet
, “
Weak fusion 2-categories
,”
Cah. Topologie Géom. Différentielle Catégoriques
63
,
3
24
(
2022
).
26.
S. E.
Crans
, “
Generalized centers of braided and sylleptic monoidal 2-categories
,”
Adv. Math.
136
,
183
223
(
1998
).
27.
L.
Kong
,
Y.
Tian
, and
S.
Zhou
, “
The center of monoidal 2-categories in 3 + 1D Dijkgraaf–Witten theory
,”
Adv. Math.
360
,
106928
(
2020
).
28.
B.
Day
and
R.
Street
, “
Monoidal bicategories and Hopf algebroids
,”
Adv. Math.
129
,
99
157
(
1997
).
29.
R.
Blackwell
,
G.
Kelly
, and
A.
Power
, “
Two-dimensional monad theory
,”
J. Pure Appl. Algebra
59
,
1
41
(
1989
).
30.
P.
Etingof
,
D.
Nikshych
, and
V.
Ostrik
, “
Fusion categories and homotopy theory
,”
Quantum Topology
1
,
209
273
(
2010
).
31.
C. L.
Douglas
,
C.
Schommer-Pries
, and
N.
Snyder
, “
The balanced tensor product of module categories
,”
Kyoto J. Math.
59
,
167
179
(
2019
).
32.
D.
Gaiotto
and
T.
Johnson-Freyd
, “
Condensations in higher categories
,” arXiv: 1905.09566v2 (
2019
).
33.
D.
Gaitsgory
, “
Sheaves of categories and the notion of 1-affineness
,”
Stacks Categories Geom., Topology, Algebra, Contemp. Math.
643
,
127
226
(
2012
).
34.
P.
Etingof
,
S.
Gelaki
,
D.
Nikshych
, and
V.
Ostrik
, “
Tensor categories
,”
Mathematical Surv. Monogr.
205
,
65
(
2015
).
35.
T. D.
Décoppet
, “
Multifusion categories and finite semisimple 2-categories
,”
J. Pure Appl. Algebra
226
,
107029
(
2022
).
36.
L.
Kong
,
X.-G.
Wen
, and
H.
Zheng
, “
Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers
,” arXiv:150201690 (
2015
).
37.
T.
Johnson-Freyd
, “
On the classification of topological orders
,”
Commun. Math. Phys.
393
,
989
(
2022
).
38.

We emphasize that we require that a topological boundary satisfy a boundary-bulk correspondence,39 i.e. that the Drinfeld center of the boundary is equivalent to the bulk. In other word, the condensed bulk phase consisting of deconfined particles is trivial.

39.
L.
Kong
and
X.-G.
Wen
, “
Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions
,” arXiv:1405.5858 (
2014
).
40.
A. Y.
Kitaev
, “
Fault-tolerant quantum computation by anyons
,”
Ann. Phys.
303
,
2
30
(
2003
).
41.
L.
Kong
,
T.
Lan
,
X.-G.
Wen
,
Z.-H.
Zhang
, and
H.
Zheng
, “
Classification of topological phases with finite internal symmetries in all dimensions
,”
J. High Energy Phys.
2020
,
49
.
42.
Z.-X.
Luo
, “
Gapped boundaries of (3 + 1)D topological orders
,”
Phys. Rev. B
107
,
125425
(
2023
).
43.
V.
Drinfeld
,
S.
Gelaki
,
D.
Nikshych
, and
V.
Ostrik
, “
On braided fusion categories I
,”
Sel. Math.
16
,
1
119
(
2010
).
44.
A.
Kirillov
, Jr.
, “
Modular categories and orbifold models II
,” arXiv:math/0110221 (
2001
).
45.
M.
Müger
, “
Galois extensions of braided tensor categories and braided crossed G-categories
,”
J. Algebra
277
,
256
281
(
2004
).
46.
P.
Pstragowski
, “
On dualizable objects in monoidal bicategories, framed surfaces and the cobordism hypothesis
,”
Theory Appl. Categ.
38
(
9
),
257
310
(
2022
).
47.
R.
Gordon
,
A. J.
Power
, and
R.
Street
, “
Coherence for tricategories
,”
Mem. Am. Math. Soc.
117
,
558
(
1995
).
You do not currently have access to this content.