In this article, we investigate the Nordström–Vlasov system in the whole space. The kinetic model is a relativistic generalization of the classical Vlasov–Poisson system in the gravitational case and describes the ensemble motion of collisionless particles interacting by means of a self-consistent scalar gravitational field. With the Fourier analysis and the smoothing effect of low velocity particles, we get a better regularity of weak solutions for the field than the one proved by Calogero and Rein [J. Differ. Equ. 204, 323 (2004)]. Meanwhile, under the additional integrability condition, we establish the energy conservation of the weak solution.

1.
Andréasson
,
H.
, “
The Einstein-Vlasov system/kinetic theory
,”
Living Rev. Relativ.
14
,
4
(
2011
).
2.
Andréasson
,
H.
,
Calogero
,
S.
, and
Rein
,
G.
, “
Global classical solutions to the spherically symmetric Nordström-Vlasov system
,”
Math. Proc. Camb. Phil. Soc.
138
,
533
539
(
2005
).
3.
Bauer
,
S.
,
Kunze
,
M.
,
Rein
,
G.
, and
Rendall
,
A. D.
, “
Multipole radiation in a collisionless gas coupled to electromagnetism or scalar gravitation
,”
Commun. Math. Phys.
266
,
267
288
(
2006
).
4.
Bergh
,
J.
and
Löfström
,
J.
,
Interpolation Spaces: An Introduction
(
Springer-Verlag
,
1976
).
5.
Bostan
,
M.
, “
Stationary solutions for the one-dimensional Nordström-Vlasov system
,”
Asymptotic Anal.
64
,
155
183
(
2009
).
6.
Calogero
,
S.
, “
Spherically symmetric steady states of galactic dynamics in scalar gravity
,”
Classical Quantum Gravity
20
,
1729
1741
(
2003
).
7.
Calogero
,
S.
and
Rein
,
G.
, “
On classical solutions of the Nordström-Vlasov system
,”
Commun. Partial Differ. Equ.
28
,
1863
1885
(
2003
).
8.
Calogero
,
S.
and
Rein
,
G.
, “
Global weak solutions to the Nordström-Vlasov system
,”
J. Differ. Equ.
204
,
323
338
(
2004
).
9.
Calogero
,
S.
, “
Global classical solutions to the 3D Nordström-Vlasov system
,”
Commun. Math. Phys.
266
,
343
353
(
2006
).
10.
Fajman
,
D.
,
Joudioux
,
J.
, and
Smulevici
,
J.
, “
Sharp asymptotics for small data solutions of the Vlasov-Nordström system in three dimensions
,” arXiv:1704.05353 [math.AP] (
2017
).
11.
Glassey
,
R. T.
,
The Cauchy Problem in Kinetic Theory
(
SIAM
,
Philadelphia
,
1996
).
12.
Jabin
,
P. E.
and
Perthame
,
B.
, “
Regularity in kinetic formulations via averaging lemmas
,”
ESAIM: Control, Optim. Calculus Var.
8
,
761
774
(
2002
).
13.
Lee
,
H.
, “
Global existence of classical solutions of the Nordström-Vlasov system in two space dimensions
,”
Commun. Partial Differ. Equ.
30
,
663
687
(
2005
).
14.
Li
,
X.
, “
The energy conservation for weak solutions to the relativistic Nordström-Vlasov system
,”
Evol. Equ. Control Theory
5
,
135
145
(
2016
).
15.
Lions
,
J. L.
and
Magenes
,
E.
,
Non-Homogeneous Boundary Value Problems and Applications
(
Springer-Verlag
,
1972
), Vol.
1
.
16.
Pallard
,
C.
, “
On global smooth solutions to the 3D Vlasov-Nordström system
,”
Ann. Inst. Henri Poincare, Sect. C
23
,
85
96
(
2006
).
17.
Rein
,
G.
, “
Collisionless kinetic equations from astrophysics—The Vlasov–Poisson system
,” in
Handbook of Differential Equations: Evolutionary Equations
, edited by
C. M.
Dafermos
and
E.
Feireisl
(
Elsevier
,
2007
), Vol.
3
, pp.
383
476
.
18.
Shatah
,
J.
and
Struwe
,
M.
,
Geometric Wave Equations
,
Courant Lectures Notes in Mathematics
(
American Mathematical Society
,
Providence
,
2000
), Vol.
2
.
19.
Stein
,
E. M.
,
Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals
(
Princeton University Press
,
1993
).
20.
Wang
,
X.
, “
Propagation of regularity and long time behavior of 3D massive relativistic transport equation I: Vlasov-Nordström system
,”
Commun. Math. Phys.
382
,
1843
1934
(
2021
).
You do not currently have access to this content.