A stochastic influenza epidemic model where influenza virus can mutate into a mutant influenza virus is established to study the influence of environmental disturbance. And the transmission rate of the model is assumed to satisfy log-normal Ornstein–Uhlenbeck process. We verify that there exists a unique global positive solution to the stochastic model. By constructing proper Lyapunov functions, sufficient conditions under which the stationary distribution exists are obtained. In addition, we discuss the extinction of the disease. Furthermore, we get the accurate expression of probability density function near the endemic equilibrium of the stochastic model. Finally, several numerical simulations are carried out to verify theoretical results and examine the influence of environmental noise.

1.
F.
Carrat
,
E.
Vergu
,
N. M.
Ferguson
,
M.
Lemaitre
,
S.
Cauchemez
,
S.
Leach
, and
A.-J.
Valleron
, “
Time lines of infection and disease in human influenza: A review of volunteer challenge studies
,”
Am. J. Epidemiol.
167
,
775
785
(
2008
).
2.
J. S.
Long
,
B.
Mistry
,
S. M.
Haslam
, and
W. S.
Barclay
, “
Host and viral determinants of influenza A virus species specificity
,”
Nat. Rev. Microbiol.
17
,
67
81
(
2019
).
3.
B.
Luu
,
V.
McCoy-Hass
,
T.
Kadiu
,
V.
Ngo
,
S.
Kadiu
, and
J.
Lien
, “
Influenza viruses
,”
Physician Assist. Clin.
8
,
531
553
(
2023
).
4.
D.
Tran
,
W.
Vaudry
,
D.
Moore
et al, “
Hospitalization for influenza A versus B
,”
Pediatrics
138
,
e20154643
(
2016
).
5.
W. H. Organization
, Influenza(Seasonal), https://www.who.int/zh/news-room/fact-sheets/detail/influenza-(seasonal) (accessed 05 09 2023).
6.
P.
Berche
, “
The Spanish flu
,”
Presse Med.
51
,
104127
(
2022
).
7.
K. J.
Forbes
, “
The Asian flu and Russian virus: The international transmission of crises in firm-level data
,”
J. Int. Econ.
63
,
59
92
(
2004
).
8.
W. H. Organization
, Influenza A(H1N1) variant virus-Brazil,
2023
, https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON473.
9.
W. H. Organization
, Influenza A(H1N2)-United States of America,
2023
, https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON482.
10.
G.
Francois
,
M.
Kew
,
P.
van Damme
,
M. J.
Mphahlele
, and
A.
Meheus
, “
Mutant hepatitis B viruses: A matter of academic interest only or a problem with far-reaching implications?
,”
Vaccine
19
,
3799
3815
(
2001
).
11.
U.
Bhattacharjee
,
A.
Chakrabarti
,
S.
Kanungo
, and
S.
Dutta
, “
Evolutionary dynamics of influenza A/H1N1 virus circulating in India from 2011 to 2021
,”
Infect., Genet. Evol.
110
,
105424
(
2023
).
12.
C.
Franco-Paredes
,
I.
Hernandez-Ramos
,
C.
Del Rio
,
K. T.
Alexander
,
R.
Tapia-Conyer
, and
J. I.
Santos-Preciado
, “
H1N1 influenza pandemics: Comparing the events of 2009 in Mexico with those of 1976 and 1918–1919
,”
Arch. Med. Res.
40
,
669
672
(
2009
).
13.
Md.
Samsuzzoha
,
M.
Singh
, and
D.
Lucy
, “
Parameter estimation of influenza epidemic model
,”
Appl. Math. Comput.
220
,
616
629
(
2013
).
14.
C. M.
Pease
, “
An evolutionary epidemiological mechanism with applications to type A influenza
,”
Theor. Popu. Biol.
31
,
422
452
(
1987
).
15.
Z.
Sabir
,
S. B.
Said
, and
Q.
Al-Mdallal
, “
A fractional order numerical study for the influenza disease mathematical model
,”
Alexandria Eng. J.
65
,
615
626
(
2023
).
16.
S.
Iwami
,
Y.
Takeuchi
, and
X.
Liu
, “
Avian–human influenza epidemic model
,”
Math. Biosci.
207
,
1
25
(
2007
).
17.
G.
González-Parra
,
A. J.
Arenas
,
D. F.
Aranda
, and
L.
Segovia
, “
Modeling the epidemic waves of AH1N1/09 influenza around the world
,”
Spat. Spatio-temporal Epidemiol.
2
,
219
226
(
2011
).
18.
P.
Krishnapriya
,
M.
Pitchaimani
, and
T. M.
Witten
, “
Mathematical analysis of an influenza A epidemic model with discrete delay
,”
J. Comput. Appl. Math.
324
,
155
172
(
2017
).
19.
C.
Zhang
,
S.
Gracy
,
T.
Başar
, and
P. E.
Paré
, “
A networked competitive multi-virus SIR model: Analysis and observability
,”
IFAC-PapersOnLine
55
,
13
18
(
2022
).
20.
J.
Yang
,
Y.
Gong
,
C.
Zhang
,
J.
Sun
,
G.
Wong
,
W.
Shi
,
W.
Liu
,
G.
Gao
, and
Y.
Bi
, “
Co-existence and co-infection of influenza A viruses and coronaviruses: Public health challenges
,”
Innovation
3
,
100306
(
2022
).
21.
L.
Liu
,
X.
Ren
, and
X.
Liu
, “
Dynamical behaviors of an influenza epidemic model with virus mutation
,”
J. Biol. Syst.
26
,
455
472
(
2018
).
22.
Z.
Han
and
J.
Zhao
, “
Stochastic SIRS model under regime switching
,”
Nonlinear Anal.: Real World Appl.
14
,
352
364
(
2013
).
23.
Y.
Emvudu
,
D.
Bongor
, and
R.
Koïna
, “
Mathematical analysis of HIV/AIDS stochastic dynamic models
,”
Appl. Math. Modell.
40
,
9131
9151
(
2016
).
24.
P.
Liu
,
A.
Din
,
L.
Huang
, and
A.
Yusuf
, “
Stochastic optimal control analysis for the hepatitis B epidemic model
,”
Results Phys.
26
,
104372
(
2021
).
25.
A. R. M.
Carvalho
and
C. M. A.
Pinto
, “
The effect of noise intensity in a stochastic model for HIV-specific helper cells
,”
IFAC-PapersOnLine
48
,
186
187
(
2015
).
26.
X.
Zhang
,
D.
Jiang
,
A.
Alsaedi
, and
T.
Hayat
, “
Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching
,”
Appl. Math. Lett.
59
,
87
93
(
2016
).
27.
C.
Han
,
Y.
Wang
, and
D.
Jiang
, “
Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process
,”
Chaos, Solitons Fractals
175
,
113930
(
2023
).
28.
Q.
Liu
, “
Stationary distribution and probability density for a stochastic SISP respiratory disease model with Ornstein–Uhlenbeck process
,”
Commun. Nonlinear Sci. Numer. Simul.
119
,
107128
(
2023
).
29.
Z.
Shi
and
D.
Jiang
, “
Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein–Uhlenbeck process
,”
Chaos, Solitons Fractals
165
,
112789
(
2022
).
30.
T.
Su
,
Q.
Yang
,
X.
Zhang
, and
D.
Jiang
, “
Stationary distribution, extinction and probability density function of a stochastic SEIV epidemic model with general incidence and Ornstein–Uhlenbeck process
,”
Physica A
615
,
128605
(
2023
).
31.
X.
Zhang
,
T.
Su
, and
D.
Jiang
, “
Dynamics of a stochastic SVEIR epidemic model incorporating general incidence rate and Ornstein–Uhlenbeck Process
,”
J. Nonl. Sci.
33
,
76
(
2023
).
32.
X.
Mao
,
Stochastic Differential Equations and Applications
(
Horwood Publishing
,
Chichester
,
1997
).
33.
N.
Du
,
D.
Nguyen
, and
G.
Yin
, “
Conditions for permanence and ergodicity of certain stochastic predator-prey models
,”
J. Appl. Probab.
53
,
187
202
(
2016
).
34.
S.
Meyn
and
R. L.
Tweedie
, “
Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes
,”
Adv. Appl. Probab.
25
,
518
548
(
1993
).
35.
L.
Huaping
and
M.
Zhien
, “
The threshold of survival for system of two species in a polluted environment
,”
J. Math. Biol.
30
,
49
61
(
1991
).
36.
Z.
Shi
,
D.
Jiang
,
X.
Zhang
, and
A.
Alsaedi
, “
A stochastic SEIRS rabies model with population dispersal: Stationary distribution and probability density function
,”
Appl. Math. Comput.
427
,
127189
(
2022
).
37.
B.
Zhou
,
X.
Zhang
, and
D.
Jiang
, “
Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate
,”
Chaos, Solitons Fractals
137
,
109865
(
2020
).
38.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
(
Springer
,
Berlin
,
1983
).
39.
D. J.
Higham
, “
An algorithmic introduction to numerical simulation of stochastic differential equations
,”
SIAM Rev.
43
,
525
546
(
2001
).
40.
J.
Duan
,
An Introduction to Stochastic Dynamics
(
Cambridge University Press
,
New York
,
2015
).
41.
A.
Yang
,
H.
Wang
,
T.
Zhang
, and
S.
Yuan
, “
Stochastic switches of eutrophication and oligotrophication: Modeling extreme weather via non-Gaussian Lévy noise
,”
Chaos: Interdiscip. J. Nonlinear Sci.
32
,
043116
(
2022
).
42.
B.
Zhou
,
D.
Jiang
,
Y.
Dai
, and
T.
Hayat
, “
Stationary distribution and density function expression for a stochastic SIQRS epidemic model with temporary immunity
,”
Nonlinear Dyn.
105
,
931
955
(
2021
).
43.
X.
Zhang
,
Q.
Yang
, and
T.
Su
, “
Dynamical behavior and numerical simulation of a stochastic eco-epidemiological model with Ornstein–Uhlenbeck process
,”
Commun. Nonlinear Sci. Numer. Simul.
123
,
107284
(
2023
).
You do not currently have access to this content.