In the present paper we study the nonlinear system ut + [ϕ(u)]x + v = 0, vt + ψ(u)vx = 0 as a model for the one-dimensional dynamics of dark matter. We prove that under certain conditions this system, such as the Gurevich-Zybin system, can also explain why the observed rotation speed (relative to the galactic center) of stars near galactic halos do not coincide with what it is expected in classical mechanics. The solutions are obtained in fully explicit formulas, in a convenient space of distributions, without using any result within the classical framework. For such purpose we use the α-solution concept which is defined within a product of distributions. Such a concept generalizes the classical solution concept and for evolution equations may also be seen as an extension of the weak solution concept to the nonlinear setting.

1.
M. V.
Pavlov
, “
The Gurevich-Zybin system
,”
J. Phys. A: Math. Gen.
38
,
3823
3840
(
2005
).
2.
J. H.
Jeans
,
Astronomy and Cosmology
, 2nd ed. (
Cambridge University Press
,
1929/1969
).
3.
M. V.
Pavlov
and
A. K.
Prykarpatski
, “
A generalized hydrodynamical Gurevich-Zybin equation of Riemann type and its Lax type integrability
,”
Condens. Matter Phys.
13
(
4
),
43002
(
2010
).
4.
Y. A.
Prykarpatski
,
D.
Blackmore
,
J.
Golenia
, and
A. K.
Prykarpatski
, “
A vertex operator representation of solutions to the Gurevich-Zybin hidrodynamical equation
,”
Opusc. Math.
33
(
1
),
139
149
(
2013
).
5.
R. C.
Thompson
, “
The Cauchy problem for the 1-D Gurevich-Zybin system
,”
J. Math. Phys.
60
,
051509
(
2019
).
6.
L.
Wei
, “
Wave breaking, global existence and persistent decay for the Gurevich-Zybin system
,”
J. Math. Fluid Mech.
22
,
47
(
2020
).
7.
V. C.
Rubin
, “
Dark matter in spiral galaxies
,”
Sci. Am.
248
(
6
),
96
108
(
1983
).
8.
F.
Zwicky
, “
On the masses of nebulae and of clusters of nebulae
,”
Astrophys. J.
86
,
217
246
(
1937
).
9.
C. O. R.
Sarrico
and
A.
Paiva
, “
Newton’s second law and the multiplication of distributions
,”
J. Math. Phys.
59
,
013505
(
2018
).
10.
A.
Bressan
and
F.
Rampazzo
, “
On differential systems with vector valued impulsive controls
,”
Bull. Un. Mat. Ital. B
7
(
2
),
641
656
(
1988
).
11.
J. F.
Colombeau
and
A.
Le Roux
, “
Multiplications of distributions in elasticity and hydrodynamics
,”
J. Math. Phys.
29
,
315
319
(
1988
).
12.
G.
Dal Maso
,
P.
LeFloch
, and
F.
Murat
, “
Definitions and weak stability of nonconservative products
,”
J. Math. Pure Appl.
74
,
483
548
(
1995
).
13.
C. O. R.
Sarrico
, “
Distributional products and global solutions for nonconservative inviscid Burgers equation
,”
J. Math. Anal. Appl.
281
,
641
656
(
2003
).
14.
A.
Paiva
and
C.
Sarrico
, “
New distributional travelling waves for the nonlinear Klein-Gordon equation
,”
Differ. Integral Equ.
30
(
11/12
),
853
878
(
2017
).
15.
S. T.
Hilden
,
H. M.
Nilsen
, and
X.
Raynaud
, “
Study of the well-posedness of models for the inaccessible pore volume in polymer flooding
,”
Transp. Porous Media
114
,
65
86
(
2016
).
16.
H.
Kalisch
and
D.
Mitrovic
, “
Singular solutions of a fully nonlinear 2 × 2 system of conservation laws
,”
Proc. Edinburgh Math. Soc.
55
(
3
),
711
729
(
2012
).
17.
M.
Mazzoti
,
C. J.
Tarafder
,
F.
Gritti
, and
G.
Guiochon
, “
Experimental evidence of a delta shock in nonlinear cromatography
,”
J. Cromatogr. A
1217
,
2002
2012
(
2010
).
18.
A. R.
Domingos
, “
Multiplication of distributions and singular waves in several physical models
,”
Eur. J. Math.
10
,
12
(
2024
).
19.
Z.
Ouyang
, “
Singular travelling wave solutions for a generalized Camassa Holm equation
,”
J. Appl. Math. Comput.
6
(
3
),
380
389
(
2022
).
20.
A.
Paiva
, “
Formation of δ-shock waves in isentropic fluids
,”
Z. Angew. Math. Phys.
71
(
4
),
110
(
2020
).
21.
A.
Paiva
, “
New δ-shock waves in the p-system: A distributional product approach
,”
Math. Mech. Solids
25
(
3
),
619
629
(
2020
).
22.
A.
Paiva
, “
Interaction of Dirac δ-waves in the nonlinear Kline-Gordon equation
,”
J. Differ. Equ.
270
,
1196
1217
(
2021
).
23.
Y.
Pang
,
L.
Shao
,
Y.
Wen
, and
J.
Ge
, “
The δ′ wave solution to a totally degenerate system of conservation laws
,”
Chaos, Solitons Fractals
161
,
112302
(
2022
).
24.
Y.
Pang
,
Y.
Wen
, and
C.
Xu
, “
The Riemann problem for pressureless compressible fluid system with time- and space-dependent external force
,”
Results Phys.
54
,
107115
(
2023
).
25.
Y.
Pang
and
C.
Xu
, “
The propagation and collision behaviour of δ′ waves in a model of three partial differential equations
,”
Z. Angew. Math. Phys.
75
,
14
(
2024
).
26.
A.
Sen
and
T.
Raja Sekhar
, “
The multiplication of distributions in the study of delta shock waves for zero-pressure gasdynamics system with energy conservation laws
,”
Ric. Mat.
72
,
653
(
2023
).
27.
C.
Shen
, “
The multiplication of distributions in the one-dimensional Eulerian droplet model
,”
Appl. Math. Lett.
112
,
106796
(
2021
).
28.
C.
Shen
and
M.
Sun
, “
A distributional product approach to the delta shock wave solution for the one-dimensional zero-pressure gas dynamics system
,”
Int. J. Nonlinear Mech.
105
,
105
112
(
2018
).
29.
C.
Shen
and
M.
Sun
, “
The multiplication of distributions in the study of delta shock wave for a hyperbolic system of Temple class
,”
Int. J. Math.
32
(
14
),
2150103
(
2021
).
30.
M.
Sun
, “
The multiplication of distributions in the study of delta shock wave for the nonlinear chromatography system
,”
Appl. Math. Lett.
96
,
61
68
(
2019
).
31.
C. O. R.
Sarrico
, “
New solutions for the one-dimensional nonconservative inviscid Burgers equation
,”
J. Math. Anal. Appl.
317
,
496
509
(
2006
).
32.
C. O. R.
Sarrico
, “
Products of distributions and singular travelling waves as solutions of advection-reaction equations
,”
Russ. J. Math. Phys.
19
(
2
),
244
255
(
2012
).
33.
C. O. R.
Sarrico
and
A.
Paiva
, “
Distributions as initial values in a triangular hyperbolic system of conservation laws
,”
Proc. R. Soc. Edinburgh, Sect. A: Math.
150
,
2757
(
2019
).
34.
C. O. R.
Sarrico
, “
Distributions as travelling waves in a nonlinear model from elastodynamics
,”
Physica D
403
,
132328
(
2020
).
35.
C. O. R.
Sarrico
, “
New singular travelling waves for convection–diffusion–reaction equations
,”
J. Phys. A: Math. Theor.
53
,
155202
(
2020
).
36.
C. O. R.
Sarrico
, “
The movement of a particle according to the Gurevich–Zybin dark matter model
,”
J. Math. Phys.
62
,
051509
(
2021
).
37.
C. O. R.
Sarrico
, “
Travelling waves for the Brio system
,”
J. Nonlinear Sci.
31
,
69
(
2021
).
38.
C. O. R.
Sarrico
and
A.
Paiva
, “
The multiplication of distributions in the study of a Riemann problem in fluid dynamics
,”
J. Nonlinear Math. Phys.
24
,
328
345
(
2021
).
39.
C. O. R.
Sarrico
, “
About a family of distributional products important in the applications
,”
Port. Math.
45
,
295
316
(
1988
).
40.
L.
Schwartz
,
Théorie des Distributions
(
Hermann
,
Paris
,
1965
).
41.
C. O. R.
Sarrico
, “
The multiplication of distributions and the Tsodyks model of synapses dynamics
,”
Int. J. Math. Anal.
6
(
21
),
999
1014
(
2012
).
42.
C. O. R.
Sarrico
, “
Emergence of δ′-waves in the zero pressure gas dynamic system
,”
Int. J. Math.
31
,
2050031
(
2020
).
43.
V. C.
Rubin
, “
One hundred years of rotating galaxies
,”
Publ. Astron. Soc. Pac.
112
,
747
750
(
2000
).
You do not currently have access to this content.