Strominger–Yau–Zaslow (SYZ) proposed a way of constructing mirror pairs as pairs of torus fibrations. We apply this SYZ construction to toric Fano surfaces as complex manifolds, and discuss the homological mirror symmetry, where we consider Morse homotopy of the moment polytope instead of the Fukaya category.
REFERENCES
1.
Auroux
, D.
, Katzarkov
, L.
, and Orlov
, D.
, “Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves
,” Inventiones Math.
166
, 537
–582
(2006
).2.
Bondal
, A. I.
and Kapranov
, M. M.
, “Enhanced triangulated categories
,” Math. USSR-Sb.
70
, 93
–107
(1991
).3.
Chan
, K.
, “Holomorphic line bundles on projective toric manifolds from Lagrangian sections of their mirrors by SYZ transformations
,” Int. Math. Res. Not.
2009
(24
), 4686
–4708
.4.
Cox
, D.
, Little
, J.
, and Schenck
, H.
, Toric Varieties
, Graduate Studies in Mathematics Vol. 124
(American Mathematical Society
, Providence, RI
, 2011
).5.
Elagin
, A.
and Lunts
, V.
, “On full exceptional collections of line bundles on Del Pezzo surfaces
,” Moscow Math. J.
16
(4
), 691
–709
(2016
).6.
Fukaya
, K.
and Oh
, Y.-G.
, “Zero-loop open strings in the cotangent bundle and Morse homotopy
,” Asian J. Math.
1
, 96
–180
(1997
).7.
Fulton
, W.
, Introduction to Toric Varieties
(Princeton University Press
, 1993
), Vol. 131
.8.
Futaki
, M.
and Kajiura
, H.
, “Homological mirror symmetry of and their products via Morse homotopy
,” J. Math. Phys.
62
(3
), 032307
(2021
).9.
Futaki
, M.
and Kajiura
, H.
, “Homological mirror symmetry of via Morse homotopy
,” Adv. Theor. Math. Phys.
22
(8
), 2611
–2637
(2022
).10.
Hille
, L.
and Perling
, M.
, “Exceptional sequences of invertible sheaves on rational surfaces
,” Compos. Math.
147
(4
), 1230
–1280
(2011
).11.
Kajiura
, H.
, “Homological perturbation theory and homological mirror symmetry
,” in Higher Structures in Geometry and Physics
(Springer
, 2011
), pp. 201
–226
.12.
Kajiura
, H.
, “On some deformations of Fukaya categories
,” in Symplectic, Poisson, and Noncommutative Geometry
(Cambridge University Press
, 2014
), Vol. 62
, p. 93
.13.
Kontsevich
, M.
, “Homological algebra of mirror symmetry
,” in Proceedings of the International Congress of Mathematicians
(Birkhäuser
, Basel
, 1995
), Vol. 1 and 2
, pp. 120
–139
.14.
Kontsevich
, M.
and Soibelman
, Y.
, “Homological mirror symmetry and torus fibrations
,” in Symplectic Geometry and Mirror Symmetry
(World Scientific Publishing
, River Edge, NJ
, 2000
), pp. 203
–263
.15.
Leung
, N. C.
, “Mirror symmetry without corrections
,” Commun. Anal. Geom.
13
(2
), 287
–331
(2005
).16.
Leung
, N. C.
, Yau
, S.-T.
, and Zaslow
, E.
, “From special Lagrangian to Hermitian-Yang-Mills via Fourier-Mukai transform
,” Adv. Theor. Math. Phys.
4
(6
), 1319
–1341
(2000
).17.
Seidel
, P.
, Fukaya Categories and Picard-Lefschetz Theory
(European Mathematical Society
, 2008
), Vol. 10
.18.
Strominger
, A.
, Yau
, S.-T.
, and Zaslow
, E.
, “Mirror symmetry is T-duality
,” Nucl. Phys. B
479
, 243
–259
(1996
).19.
Ueda
, K.
, “Homological mirror symmetry for toric Del Pezzo surfaces
,” Commun. Math. Phys.
264
(1
), 71
–85
(2006
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.