Strominger–Yau–Zaslow (SYZ) proposed a way of constructing mirror pairs as pairs of torus fibrations. We apply this SYZ construction to toric Fano surfaces as complex manifolds, and discuss the homological mirror symmetry, where we consider Morse homotopy of the moment polytope instead of the Fukaya category.

1.
Auroux
,
D.
,
Katzarkov
,
L.
, and
Orlov
,
D.
, “
Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves
,”
Inventiones Math.
166
,
537
582
(
2006
).
2.
Bondal
,
A. I.
and
Kapranov
,
M. M.
, “
Enhanced triangulated categories
,”
Math. USSR-Sb.
70
,
93
107
(
1991
).
3.
Chan
,
K.
, “
Holomorphic line bundles on projective toric manifolds from Lagrangian sections of their mirrors by SYZ transformations
,”
Int. Math. Res. Not.
2009
(
24
),
4686
4708
.
4.
Cox
,
D.
,
Little
,
J.
, and
Schenck
,
H.
,
Toric Varieties
,
Graduate Studies in Mathematics Vol. 124
(
American Mathematical Society
,
Providence, RI
,
2011
).
5.
Elagin
,
A.
and
Lunts
,
V.
, “
On full exceptional collections of line bundles on Del Pezzo surfaces
,”
Moscow Math. J.
16
(
4
),
691
709
(
2016
).
6.
Fukaya
,
K.
and
Oh
,
Y.-G.
, “
Zero-loop open strings in the cotangent bundle and Morse homotopy
,”
Asian J. Math.
1
,
96
180
(
1997
).
7.
Fulton
,
W.
,
Introduction to Toric Varieties
(
Princeton University Press
,
1993
), Vol.
131
.
8.
Futaki
,
M.
and
Kajiura
,
H.
, “
Homological mirror symmetry of CPn and their products via Morse homotopy
,”
J. Math. Phys.
62
(
3
),
032307
(
2021
).
9.
Futaki
,
M.
and
Kajiura
,
H.
, “
Homological mirror symmetry of F1 via Morse homotopy
,”
Adv. Theor. Math. Phys.
22
(
8
),
2611
2637
(
2022
).
10.
Hille
,
L.
and
Perling
,
M.
, “
Exceptional sequences of invertible sheaves on rational surfaces
,”
Compos. Math.
147
(
4
),
1230
1280
(
2011
).
11.
Kajiura
,
H.
, “
Homological perturbation theory and homological mirror symmetry
,” in
Higher Structures in Geometry and Physics
(
Springer
,
2011
), pp.
201
226
.
12.
Kajiura
,
H.
, “
On some deformations of Fukaya categories
,” in
Symplectic, Poisson, and Noncommutative Geometry
(
Cambridge University Press
,
2014
), Vol.
62
, p.
93
.
13.
Kontsevich
,
M.
, “
Homological algebra of mirror symmetry
,” in
Proceedings of the International Congress of Mathematicians
(
Birkhäuser
,
Basel
,
1995
), Vol.
1 and 2
, pp.
120
139
.
14.
Kontsevich
,
M.
and
Soibelman
,
Y.
, “
Homological mirror symmetry and torus fibrations
,” in
Symplectic Geometry and Mirror Symmetry
(
World Scientific Publishing
,
River Edge, NJ
,
2000
), pp.
203
263
.
15.
Leung
,
N. C.
, “
Mirror symmetry without corrections
,”
Commun. Anal. Geom.
13
(
2
),
287
331
(
2005
).
16.
Leung
,
N. C.
,
Yau
,
S.-T.
, and
Zaslow
,
E.
, “
From special Lagrangian to Hermitian-Yang-Mills via Fourier-Mukai transform
,”
Adv. Theor. Math. Phys.
4
(
6
),
1319
1341
(
2000
).
17.
Seidel
,
P.
,
Fukaya Categories and Picard-Lefschetz Theory
(
European Mathematical Society
,
2008
), Vol.
10
.
18.
Strominger
,
A.
,
Yau
,
S.-T.
, and
Zaslow
,
E.
, “
Mirror symmetry is T-duality
,”
Nucl. Phys. B
479
,
243
259
(
1996
).
19.
Ueda
,
K.
, “
Homological mirror symmetry for toric Del Pezzo surfaces
,”
Commun. Math. Phys.
264
(
1
),
71
85
(
2006
).
You do not currently have access to this content.