Projection operators arise naturally as one-particle density operators associated to Slater determinants in fields such as quantum mechanics and the study of determinantal processes. In the context of the semiclassical approximation of quantum mechanics, projection operators can be seen as the analogue of characteristic functions of subsets of the phase space, which are discontinuous functions. We prove that projection operators indeed converge to characteristic functions of the phase space and that in terms of quantum Sobolev spaces, they exhibit the same maximal regularity as characteristic functions. This can be interpreted as a semiclassical asymptotic on the size of commutators in Schatten norms. Our study answers a question raised in Chong et al. [J. Eur. Math. Soc. (unpublished) (2024)] about the possibility of having projection operators as initial data. It also gives a strong convergence result in Sobolev spaces for the Weyl law in phase space.

1.
Agmon
,
S.
,
Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrodinger Operations
,
Princeton Legacy Library, Mathematical Notes Vol. 29
(
Princeton University Press
,
1982
).
2.
Agmon
,
S.
, “
Bounds on exponential decay of eigenfunctions of Schrödinger operators
,” in
Schrödinger Operators
,
Lecture Notes in Mathematics
(
Springer
,
Berlin, Heidelberg
,
1985
), pp.
1
38
.
3.
Araki
,
H.
, “
On an inequality of Lieb and Thirring
,”
Lett. Math. Phys.
19
,
167
170
(
1990
).
4.
Benedikter
,
N.
, “
Effective dynamics of interacting fermions from semiclassical theory to the random phase approximation
,”
J. Math. Phys.
63
,
081101
(
2022
).
5.
Brezis
,
H.
,
Analyse Fonctionnelle: Théorie et Applications, Nouvelle Présentation 2005
,
Sciences Sup
(
Dunod
,
Paris
,
2005
).
6et al..
Chong
,
J. J.
,
Lafleche
,
L.
, and
Saffirio
,
C.
, “
On the semiclassical regularity of thermal equilibria
,” in
Quantum Mathematics I
,
Springer INdAM Series
, edited by
Correggi
,
M.
and
Falconi
,
M.
(
Springer Nature
,
Singapore
,
2023
), pp.
89
105
.
7et al..
Chong
,
J. J.
,
Lafleche
,
L.
, and
Saffirio
,
C.
, “
On the L2 rate of convergence in the limit from the Hartree to the Vlasov–Poisson equation
,”
J. Éc. Polytech. Math.
10
,
703
726
(
2023a
).
8et al..
Chong
,
J. J.
,
Lafleche
,
L.
, and
Saffirio
,
C.
, “
From many-body quantum dynamics to the Hartree–Fock and Vlasov equations with singular potentials
,”
J. Eur. Math. Soc.
(unpublished) (
2024
); arxiv:2103.10946.
9.
Cwikel
,
M.
, “
Weak type estimates for singular values and the number of bound states of Schrodinger operators
,”
Ann. Math.
106
,
93
100
(
1977
).
10.
De Palma
,
G.
and
Trevisan
,
D.
, “
Quantum optimal transport with quantum channels
,”
Ann. Henri Poincaré
22
,
3199
3234
(
2021
).
11.
Deleporte
,
A.
and
Lambert
,
G.
, “
Universality for free fermions and the local Weyl law for semiclassical Schrödinger operators
,”
J. Eur. Math. Soc.
(published online); arXiv:2109.02121.
12.
Fournais
,
S.
,
Lewin
,
M.
, and
Solovej
,
J. P.
, “
The semi-classical limit of large fermionic systems
,”
Calculus Var. Partial Differ. Equations
57
,
105
(
2018
).
13.
Fournais
,
S.
and
Mikkelsen
,
S.
, “
An optimal semiclassical bound on commutators of spectral projections with position and momentum operators
,”
Lett. Math. Phys.
110
,
3343
3373
(
2020
).
14et al..
Hundertmark
,
D.
,
Laptev
,
A.
, and
Weidl
,
T.
, “
New bounds on the Lieb–Thirring constants
,”
Inventiones Math.
140
,
693
704
(
2000
).
15.
Lafleche
,
L.
, “
Quantum optimal transport and weak topologies
,” arXiv:2306.12944 (
2023
).
16.
Lafleche
,
L.
, “
On quantum Sobolev inequalities
,”
J. Funct. Anal.
286
,
110400
(
2024
).
17.
Lafleche
,
L.
and
Saffirio
,
C.
, “
Strong semiclassical limits from Hartree and Hartree–Fock to Vlasov–Poisson equations
,”
Anal. PDE
16
,
891
926
(
2023
).
18.
Lewin
,
M.
, “
Describing lack of compactness in Sobolev spaces
,”
lecture notes, University of Cergy-Pontoise, France
(
2010
).
19.
Lieb
,
E. H.
and
Thirring
,
W. E.
, “
Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities
,” in
Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann
(
Princeton University Press, Princeton, NJ
,
1976
), pp.
269
303
.
20.
Lions
,
P.-L.
, “
The concentration-compactness principle in the calculus of variations. The locally compact case, Part 2
,”
Ann. Inst. Henri Poincare, Sect. C, Anal. Non Linéaire
1
,
223
283
(
1984a
).
21.
Lions
,
P.-L.
, “
The concentration-compactness principle in the calculus of variations. The locally compact case, Part 1
,”
Ann. Inst. Henri Poincare, Sect. C, Anal. Non Linéaire
1
,
109
145
(
1984b
).
22.
Lions
,
P.-L.
and
Paul
,
T.
, “
Sur les mesures de Wigner
,”
Rev. Mat. Iberoam.
9
,
553
618
(
1993
).
23.
Martin
,
A.
, “
Bound states in the strong coupling limit
,”
Helv. Phys. Acta
45
,
140
148
(
1972
).
24et al..
Porta
,
M.
,
Rademacher
,
S.
,
Saffirio
,
C.
, and
Schlein
,
B.
, “
Mean field evolution of fermions with Coulomb interaction
,”
J. Stat. Phys.
166
,
1345
1364
(
2017
).
25.
Sickel
,
W.
, “
On the regularity of characteristic functions
,” in
Anomalies in Partial Differential Equations
,
Springer INdAM Series Vol. 43
(
Springer International Publishing
,
Cham
,
2021
), pp.
395
441
.
26.
Simon
,
B.
, “
Analysis with weak trace ideals and the number of bound states of Schrödinger operators
,”
Trans. Am. Math. Soc.
224
,
367
380
(
1976
).
27.
Tamura
,
H.
, “
The asymptotic eigenvalue distribution for non-smooth elliptic operators
,”
Proc. Jpn. Acad., Ser. A
50
,
19
22
(
1974
).
28.
Tartar
,
L.
,
An Introduction to Sobolev Spaces and Interpolation Spaces
, 1st ed.,
Lecture Notes of the Unione Matematica Italiana Vol. 3
(
Springer-Verlag
,
Berlin, Heidelberg
,
2007
).
29.
Triebel
,
H.
,
Interpolation Theory, Function Spaces, Differential Operators
,
North-Holland Mathematical Library Vol. 18
(
Elsevier Science
,
1978
).
30.
Triebel
,
H.
,
Fractals and Spectra: Related to Fourier Analysis and Function Spaces
(
Springer Science & Business Media
,
2010
).
31.
Werner
,
R. F.
, “
Quantum harmonic analysis on phase space
,”
J. Math. Phys.
25
,
1404
1411
(
1984
).
You do not currently have access to this content.