In 2001–2013 Derkachov and Manashov with coauthors obtained simple and natural expressions of R-matrices for the principal series of representations of the groups SL(2,C), SL(2,R), SL(n,C), SO(1, n). The Yang–Baxter identities for these intertwining operators are kinds of multivariate hypergeometric transformations. Derivations of the identities are based on calculations “of physical level of rigor” with divergent integrals. Our purpose is a formal mathematical justification of these results.

1.
S. É.
Derkachov
,
G. P.
Korchemsky
, and
A. N.
Manashov
, “
Noncompact Heisenberg spin magnets from high-energy QCD: I. Baxter Q-operator and separation of variables
,”
Nucl. Phys. B
617
(
1–3
),
375
440
(
2001
).
2.
M.
Kirch
and
A. N.
Manashov
, “
Noncompact SL(2,R) spin chain
,”
J. High Energy Phys.
2004
(
06
),
035
.
3.
S. È.
Derkachev
and
A. N.
Manashov
, “
General solution of the Yang–Baxter equation with symmetry group SL(n,C)
,”
St. Petersburg Math. J.
21
(
4
),
513
577
(
2010
).
4.
D.
Chicherin
,
S. È.
Derkachov
, and
V. P.
Spiridonov
, “
From principal series to finite-dimensional solutions of the Yang-Baxter equation
,”
SIGMA
12
,
028
(
2016
).
5.
D.
Chicherin
,
S.
Derkachov
, and
A. P.
Isaev
, “
Conformal algebra: R-matrix and star-triangle relation
,”
J. High Energy Phys.
2013
,
20
.
6.
P. A.
Valinevich
,
S. È.
Derkachov
, and
A. P.
Isaev
, “
SOS-representation for the SL(2,C)-invariant R-operator and Feynman diagrams
,”
J. Math. Sci.
238
(
6
),
819
833
(
2019
).
7.
S. È.
Derkachov
and
A. N.
Manashov
, “
R-matrix and baxter Q-operators for the noncompact SL(N,C) invariant spin chain
,”
SIGMA
2
,
084
(
2006
).
8.
I. M.
Gelfand
,
M. I.
Graev
, and
N. Y.
Vilenkin
,
Generalized Functions. Vol. 5. Integral Geometry and Representation Theory
(
Academic Press
,
New York, London
,
1966
).
9.

More precisely, this is the even principal series since our representations are trivial on the center of SU(1, 1) consisting of matrices ±100±1.

10.
A. P.
Prudnikov
,
Y. A.
Brychkov
, and
O. I.
Marichev
,
Integrals and Series. Vol. 1. Elementary Functions
(
Gordon & Breach Science Publishers
,
New York
,
1986
).
11.
A.
Erdélyi
,
W.
Magnus
,
F.
Oberhettinger
, and
F. G.
Tricomi
,
Higher Transcendental Functions. Vol. I. Based, in Part, on Notes Left by Harry Bateman
(
McGraw-Hill Book Co., Inc.
,
New York, Toronto, London
,
1953
).
12.
Y. A.
Neretin
, “
Representations of complementary series entering discretely in tensor products of unitary representations
,”
Funct. Anal. Appl.
20
(
1
),
68
70
(
1986
).
13.
Y. A.
Neretin
and
G. I.
Ol’shanskii
, “
Boundary values of holomorphic functions, singular unitary representations of O(p, q), and their limits as q → ∞
,”
J. Math. Sci.
87
(
6
),
3983
4035
(
1997
).
14.

It seems that Ř(σ) is a simplest intertwining operator TpTqTqTp different from the permutation of tensor factors.

15.
A. A.
Belyaev
and
A. A.
Shkalikov
, “
Multipliers in spaces of Bessel potentials: The case of indices of nonnegative smoothness
,”
Math. Notes
102
(
5–6
),
632
644
(
2017
).
16.

The identity (2.3) actually is used below only for kl.

17.
W.
Rudin
,
Functional Analysis
(
McGraw-Hill Book Co.
,
New York, Düsseldorf-Johannesburg
,
1973
).
18.
I. M.
Gelfand
and
G. E.
Shilov
,
Generalized Functions. Vol. I: Properties and Operations
(
Academic Press
,
New York, London
,
1964
).
19.

Recall that the Gauss hypergeometric function F12 can be represented as an integral of a product (xa)α(xb)β(xc)γ. Functions Fp1p admit integral representations as (p − 1)-dimensional integral of products of powers of linear forms. Some multivariate analogues of hypergeometric functions (as Appell, Kampét de Feriét, Lauricella hypergeometric functions,30 Jack symmetric functions31) have integral representations in this spirit. So the kernel of the left-hand side of the Yang-Baxter identity can be regarded as a kind of a hypergeometric function of 6 variables, and the identity itself is a nontrivial hypergeometric transformation.

20.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics. I. Functional Analysis
(
Academic Press
,
New York, London
,
1972
).
21.
I. N.
Bernshtein
and
S. I.
Gelfand
, “
Meromorphic property of the functions Pλ
,”
Funct. Anal. Appl.
3
(
1
),
68
69
(
1969
).
22.
C.
Sabbah
, “
Proximité évanescente II, Equations fonctionnelles pour plusieurs fonctions analytiques
,”
Compos. Math.
64
,
213
241
(
1987
), http://www.numdam.org/item/CM_1987__64_2_213_0.pdf.
23.
A.
Gyoja
, “
Bernstein-Sato’s polynomial for several analytic functions
,”
J. Math. Kyoto Univ.
33
(
2
),
399
411
(
1993
).
24.
M. E.
Taylor
,
Pseudodifferential Operators
(
Princeton University Press
,
Princeton, NJ
,
1981
).
25.
M. A.
Shubin
,
Pseudodifferential Operators and Spectral Theory
(
Springer-Verlag
,
Berlin
,
1987
).
26.
V. G.
Maz’ya
and
T. O.
Shaposhnikova
,
Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators
(
Springer-Verlag
,
Berlin
,
2009
).
27.
M.
Bauer
,
M.
Bruveris
,
P.
Harms
, and
P. W.
Michor
, “
Smooth perturbations of the functional calculus and applications to Riemannian geometry on spaces of metrics
,”
Commun. Math. Phys.
389
,
899
931
(
2022
).
28.
A. A.
Belyaev
and
A. A.
Shkalikov
, “
Multipliers in Bessel potential spaces with smoothness indices of different sign
,”
St. Petersburg Math. J.
30
(
2
),
203
218
(
2019
).
29.
S. G.
Samko
,
A. A.
Kilbas
, and
O. I.
Marichev
,
Fractional Integrals and Derivatives. Theory and Applications
(
Gordon and Breach
,
Yverdon
,
1993
).
30.
H.
Exton
,
Multiple Hypergeometric Functions and Applications
(
Halsted Press, John Wiley & Sons, Inc.
,
New York, London, Sydney
,
1976
).
31.
A.
Okounkov
and
G.
Olshanski
, “
Shifted Jack polynomials, binomial formula, and applications
,”
Math. Res. Lett.
4
(
1
),
67
78
(
1997
).
You do not currently have access to this content.