In this paper, we study the limit behavior of the smooth solution for a reduced vectorial quantum Zakharov system which describes the interaction between the quantum Langmuir waves and quantum ion-acoustic waves in the plasmas. We first give the local existence and uniqueness of the solution to the quantum Zakharov system. Then we derive the uniform bounds of solution with appropriate initial data, and prove that the solution of the quantum Zakharov system converges to the solution of the nonlinear Schrödinger system.

1.
Bejenaru
,
I.
and
Herr
,
S.
, “
Convolutions of singular measures and applications to the Zakharov system
,”
J. Funct. Anal.
261
(
2
),
478
506
(
2011
).
2.
Bejenaru
,
I.
,
Herr
,
S.
,
Holmer
,
J.
, and
Tataru
,
D.
, “
On the 2D Zakharov system with L2 Schrödinger data
,”
Nonlinearity
.
22
(
5
),
1063
1089
(
2009
).
3.
Bourgain
,
J.
and
Colliander
,
J.
, “
On wellposedness of the Zakharov system
,”
Int. Math. Res. Not.
11
,
515
546
(
1996
).
4.
Chen
,
T.-F.
,
Fang
,
Y.-F.
and
Wang
,
K.-H.
, “
Low regularity global well-posedness for the quantum Zakharov system in 1D
,”
Taiwanese J. Math
21
(
2
),
341
361
(
2017
).
5.
Colliander
,
J.
,
Holmer
,
J.
, and
Tzirakis
,
N.
, “
Low regularity global well-posedness for the Zakharov and Klein–Gordon–Schrödinger systems
,”
Trans. Am. Math. Soc.
360
(
9
),
4619
4638
(
2008
).
6.
Chueshov
,
I.
, “
Quantum Zakharov model in a bounded domain
,”
Z. Angew. Math. Phys.
64
,
967
989
(
2013
).
7.
Fang
,
Y.-F.
,
Lin
,
C.-K.
, and
Segata
,
J.-I.
, “
The fourth-order nonlinear Schrödinger limit for quantum Zakharov system
,”
Z. Angew. Math. Phys.
67
(
6
),
145
(
2016
).
8.
Fang
,
Y.-F.
and
Nakanishi
,
K.
, “
Global well-posedness and scattering for the quantum Zakharov system in L2
,”
Proc. Am. Math. Soc. Ser. B.
6
,
21
32
(
2019
).
9.
Fang
,
Y.-F.
,
Shih
,
H.-W.
and
Wang
,
K.-H.
, “
Local well-posedness for the quantum Zakharov system in one spatial dimension
,”
J. Hyperbolic Differ. Equations
14
(
1
),
157
192
(
2017
).
10.
Fang
,
Y.-F.
and
Wang
,
K.-H.
, “
Local well-posedness for the quantum Zakharov system
,”
Commun. Math. Sci.
18
(
5
),
1383
1411
(
2020
).
11.
Ginibre
,
J.
,
Tsutsumi
,
Y.
and
Velo
,
G.
, “
On the Cauchy problem for the Zakharov system
,”
J. Funct. Anal.
151
(
2
),
384
436
(
1997
).
12.
Guo
,
B.
and
Shen
,
L.
, “
The existence and uniqueness of the classical solution on the periodic initial value problem for Zakharov equations
,”
Acta Math. Appl. Sini.
5
(
3
),
310
324
(
1982
) (in Chinese).
13.
Guo
,
B.
,
Zhang
,
J.
and
Pu
,
X.
, “
On the existence and uniqueness of smooth solution for a generalized Zakharov equation
,”
J. Math. Anal. Appl.
365
(
1
),
238
253
(
2010
).
14.
Guo
,
Y.
,
Zhang
,
J.
and
Guo
,
B.
, “
Global well-posedness and the classical limit of the solution for the quantum Zakharov system
,”
Z. Angew. Math. Phys.
64
(
1
),
53
68
(
2013
).
15.
Guo
,
Z.
,
Lee
,
S.
,
Nakanishi
,
K.
, and
Wang
,
C.
, “
Generalized Strichartz estimates and scattering for 3D Zakharov system
.
Commun. Math. Phys.
331
(
1
),
239
259
(
2014
).
16.
Guo
,
Z.
,
Peng
,
L.
and
Wang
,
B.
, “
Decay estimates for a class of wave equations
,”
J. Funct. Anal.
254
(
6
),
1642
1660
(
2008
).
17.
Haas
,
F.
and
Shukla
,
P. K.
, “
Quantum and classical dynamics of Langmuir wave packets
,”
Phys. Rev. E.
79
(
6
),
066402
(
2009
).
18.
Hani
,
Z.
,
Pusateri
,
F.
and
Shatah
,
J.
, “
Scattering for the Zakharov system in 3 dimensions
,”
Commun. Math. Phys.
322
(
3
),
731
753
(
2013
).
19.
Huang
C.
,
Guo
,
B.
and
Heng
,
Y.
, “
Scattering for 3D quantum Zakharov system in L2
,”
Commun. Math. Sci.
19
(
2
),
383
404
(
2021
).
20.
Kato
,
I.
, “
Local well-posedness for the quantum Zakharov system in three and higher dimensions
,”
J. Hyperbolic Differ. Equations
18
(
2
),
257
270
(
2021
).
21.
Kenig
,
C. E.
and
Wang
,
W.
, “
Existence of local smooth solution for a generalized Zakharov system
,”
J. Fourier Anal. Appl.
4
(
4–5
),
469
490
(
1998
).
22.
Masmoudi
,
N.
and
Nakanishi
,
K.
, “
From the Klein–Gordon–Zakharov system to the nonlinear Schrödinger equation
,”
J. Hyperbolic Differ. Equations
2
(
4
),
975
1008
(
2005
).
23.
Masmoudi
,
N.
and
Nakanishi
,
K.
, “
Energy convergence for singular limits of Zakharov type systems
,”
Invent. Math.
172
,
535
583
(
2008
).
24.
Ozawa
,
T.
and
Tsutsumi
,
Y.
, “
The nonlinear Schrödinger limit and the initial layer of the Zakharov equations
,”
Differ. Integral Equations
5
(
4
),
721
745
(
1992
).
25.
Shao
,
S.
,
Lin
,
C.-K.
and
Jiang
,
J.-C.
, “
On one dimensional quantum Zakharov system
,”
Discrete Contin. Dyn. Syst.
36
(
10
),
5445
5475
(
2016
).
26.
Simpson
,
G.
,
Sulem
,
C.
, and
Sulem
,
P. L.
, “
Arrest of Langmuir wave collapse by quantum effects
,”
Phys. Rev. E
80
(
5
),
056405
(
2009
)
27.
Sulem
,
C.
and
Sulem
,
P. L.
, “
Quelques résulatats de régularité pour les équation de la turbulence de Langmuir
,”
C. R. Acad. Sci. Paris
289
,
173
176
(
1979
).
28.
Schochet
,
S. H.
and
Weinstein
,
M. I.
, “
The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence
,”
Commun. Math. Phys.
106
,
569
580
(
1986
).
29.
Zakharov
,
V. E.
, “
Collapse of Langmuir waves
,”
Sov. Phys. JETP.
35
,
908
914
(
1972
).
30.
Zhang
,
J.
and
Guo
,
Y.
, “
On the convergence of the solution for a generalized Zakharov system
,”
J. Math. Phys.
52
(
4
),
043512
(
2011
).
You do not currently have access to this content.