We are interested in the semilinear wave equations evolving in the expanding spacetimes with Friedmann–Lemaître–Robertson–Walker (FLRW) metric. By the weighted energy estimate, we show that when the nonlinearity depends on the time derivative of the unknown, the equation admits a global smooth solution if the spacetime is undergoing accelerated expansion. While the solution will blowup in the sense of some averaged quantity if the expanding rate is not fast enough. When the nonlinearity depends on the space derivatives of the unknown or the unknown itself, we can show that the solution will blowup in finite time even though the expanding rate is fast enough (accelerated expansion). Our results show that the semilinear wave equations in FLRW spacetimes have different properties from the famous Glassey and Strauss conjectures in flat or asymptotically flat spacetimes.

1.
H. B.
Benaoum
, “
Modified Chaplygin gas cosmology
,”
Adv. High Energy Phys.
2012
,
357802
.
2.
M. C.
Bento
,
O.
Bertolami
, and
A. A.
Sen
, “
Letter: Generalized Chaplygin gas model: Dark energy–dark matter unification and CMBR constraints
,”
Gen. Relativ. Gravitation
35
,
2063
2069
(
2003
).
3.
U.
Debnath
,
A.
Banerjee
, and
S.
Chakraborty
, “
Role of modified Chaplygin gas in accelerated universe
,”
Classical Quantum Gravity
21
,
5609
5617
(
2004
).
4.
M.
Heydari-Fard
and
H. R.
Sepangi
, “
Generalized Chaplygin gas as geometrical dark energy
,”
Phys. Rev. D
76
,
104009
(
2007
).
5.
A.
Kamenshchik
,
U.
Moschella
, and
V.
Pasquier
, “
Chaplygin-like gas and branes in black hole bulks
,”
Phys. Lett. B
487
,
7
13
(
2000
).
6.
E. O.
Kahya
and
B.
Pourhassan
, “
The universe dominated by the extended Chaplygin gas
,”
Mod. Phys. Lett. A
30
,
1550070
(
2015
).
7.
S. W.
Hawking
and
G. F. R.
Ellis
,
The Large Scale Structure of Space-Time
(
Cambridge University Press
,
London, New York
,
1973
).
8.
M.
Hadzic
and
J.
Speck
, “
The global future stability of the FLRW solutions to the dust-Einstein system with a positive cosmological constant
,”
J. Hyperbolic Differ. Equations
12
,
87
188
(
2015
).
9.
P. G.
LeFloch
and
C.
Wei
, “
Nonlinear stability of self-gravitating irrotational Chaplygin fluids in a FLRW geometry
,”
Ann. Inst. Henri Poincare, Sect. C Anal. Non Linéaire
38
,
787
814
(
2021
).
10.
C.
Liu
and
C.
Wei
, “
Future stability of the FLRW spacetime for a large class of perfect fluids
,”
Ann. Henri Poincaré
22
,
715
770
(
2021
).
11.
H.
Ringström
, “
Power law inflation
,”
Commun. Math. Phys.
290
,
155
218
(
2009
).
12.
H.
Ringström
, “
Future stability of the Einstein-non-linear scalar field system
,”
Inventiones Math.
173
,
123
208
(
2008
).
13.
I.
Rodnianski
and
J.
Speck
, “
The nonlinear future stability of the FLRW family of solutions to the irrotational Euler–Einstein system with a positive cosmological constant
,”
J. Eur. Math. Soc.
15
,
2369
2462
(
2013
).
14.
J.
Speck
, “
The nonlinear future stability of the FLRW family of solutions to the Euler–Einstein system with a positive cosmological constant
,”
Sel. Math.
18
,
633
715
(
2012
).
15.
T.
Oliynyk
, “
Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant
,”
Commun. Math. Phys.
346
,
293
312
(
2016
).
16.
S.
Huo
and
C.
Wei
, “
Classical solutions to relativistic Burgers equations in FLRW space-times
,”
Sci. China Math.
63
,
357
370
(
2020
).
17.
S.
Huo
and
C.
Wei
, “
Classical solution to relativistic Burger’s equation in SdS and SAdS space-times
,”
J. Math. Phys.
60
,
021504
(
2019
).
18.
J.
Speck
, “
The stabilizing effect of spacetime expansion on relativistic fluids with sharp results for the radiation equation of state
,”
Arch. Ration. Mech. Anal.
210
,
535
579
(
2013
).
19.
C.
Wei
, “
Stabilizing effect of the power law inflation on isentropic relativistic fluids
,”
J. Differ. Equations
265
,
3441
3463
(
2018
).
20.
K.
Tsutaya
and
Y.
Wakasugi
, “
Blow up of solutions of semilinear wave equations in Friedmann-Lemaître-Robertson-Walker spacetime
,”
J. Math. Phys.
61
,
091503
(
2020
).
21.
R. T.
Glassey
, “
Finite-time blow-up for solutions of nonlinear wave equations
,”
Math. Z.
177
,
323
340
(
1981
).
22.
R. T.
Glassey
, “
Existence in the large for □u = F(u) in two space dimensions
,”
Math. Z.
178
,
233
261
(
1981
).
23.
F.
John
, “
Blow-up of solutions of nonlinear wave equations in three space dimensions
,”
Manuscripta Math.
28
,
235
268
(
1979
).
24.
T.
Kato
, “
Biow-up of solutions of some nonlinear hyperbolic equations
,”
Commun. Pure Appl. Math.
33
,
501
505
(
1980
).
25.
W. A.
Strauss
, “
Nonlinear scattering theory at low energy
,”
J. Funct. Anal.
41
,
110
133
(
1981
).
26.
T. C.
Sideris
, “
Nonexistence of global solutions to semilinear wave equations in high dimensions
,”
J. Differ. Equations
52
,
378
406
(
1984
).
27.
C.
Wang
and
X.
Yu
, “
Concerning the Strauss conjecture on asymptotically Euclidean manifolds
,”
J. Math. Anal. Appl.
379
,
549
566
(
2011
).
28.
Y.
Zhou
, “
Cauchy problem for semilinear wave equations in four space dimensions with small initial data
,”
J. Partial Differ. Equations
8
,
135
144
(
1995
).
29.
A.
Palmieri
, “
Blow-up results for semilinear damped wave equations in Einstein–de Sitter spacetime
,”
Z. Angew. Math. Phys.
72
(
2
),
64
(
2021
).
30.
A.
Palmieri
, “
Lifespan estimates for local solutions to the semilinear wave equation in Einstein–de Sitter spacetime
,”
Appl. Anal.
102
,
3577
3608
(
2023
).
31.
Z.
Tu
and
J.
Lin
, “
A note on the blowup of scale invariant damping wave equation with sub-Strauss exponent
,” arXiv:1709.00866v2.
32.
J.
Lin
and
Z.
Tu
, “
Life-span of semilinear wave equations with scale-invariant damping: Critical Strauss exponent case
,”
Differ. Integr. Equations
32
,
249
264
(
2019
).
33.
K.
Tsutaya
and
Y.
Wakasugi
, “
Blow-up of solutions of semilinear wave equations in accelerated expanding Friedmann–Lemaître–Robertson–Walker spacetime
,”
Rev. Math. Phys.
34
,
2250003
(
2022
).
34.
K.
Tsutaya
and
Y.
Wakasugi
, “
On heatlike lifespan of solutions of semilinear wave equations in Friedmann-Lemaître-Robertson-Walker spacetime
,”
J. Math. Anal. Appl.
500
,
125133
(
2021
).
35.
M.
Ikeda
and
M.
Sobajima
, “
Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data
,”
Math. Ann.
372
,
1017
1040
(
2018
).
36.
K.
Hidano
,
C.
Wang
, and
K.
Yokoyama
, “
The Glassey conjecture with radially symmetric data
,”
J. Math. Pures Appl.
98
,
518
541
(
2012
).
37.
M. Y.
Liu
and
C. B.
Wang
, “
The blow up of solutions to semilinear wave equations on asymptotically Euclidean manifolds
,”
Discrete Contin. Dyn. Syst.
43
(
11
),
3987
4009
(
2023
).
38.
Y.
Zhou
, “
Blow-up of solutions to the Cauchy problem for nonlinear wave equations
,”
Chin. Ann. Math.
22B
,
275
280
(
2001
).
39.
M.
Hamouda
,
M.
Hamza
, and
A.
Palmieri
, “
Blow-up and lifespan estimates for a damped wave equation in the Einstein–de Sitter spacetime with nonlinearity of derivative type
,”
Nonlinear Differ. Equations Appl.
29
(
2
),
19
(
2022
).
40.
K.
Tsutaya
and
Y.
Wakasugi
, “
On Glassey’s conjecture for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime
,”
Boundary Value Probl.
2021
,
94
.
41.
M. R.
Ebert
and
J.
Marques
, “
Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime
,”
Math. Methods Appl. Sci.
46
,
2602
2635
(
2023
).
42.
K.
Yagdjian
, “
Global existence of the scalar field in de Sitter spacetime
,”
J. Math. Anal. Appl.
396
,
323
344
(
2012
).
43.
K.
Yagdjian
, “
The semilinear Klein–Gordon equation in de Sitter spacetime
,”
Discrete Contin. Dyn. Syst. S
2
,
679
696
(
2009
).
44.
K.
Yagdjian
and
A.
Galstian
, “
Fundamental solutions of the wave equation in Robertson–Walker spaces
,”
J. Math. Anal. Appl.
346
,
501
520
(
2008
).
45.
K.
Yagdjian
and
A.
Galstian
, “
Fundamental solutions for the Klein-Gordon equation in de Sitter spacetime
,”
Commun. Math. Phys.
285
,
293
344
(
2009
).
46.
C.
Wei
and
N.
Lai
, “
Global existence of smooth solutions to exponential wave maps in FLRW spacetimes
,”
Pac. J. Math.
289
,
489
509
(
2017
).
47.
S.
Alinhac
,
Geometric Analysis of Hyperbolic Differential Equations: An Introduction
(
Cambridge University Press
,
Cambridge
,
2010
).
48.
C.
Sogge
,
Lectures on Non-Linear Wave Equations
(
International Press
,
Boston, MA
,
1995
).
You do not currently have access to this content.