This paper is devoted to studying the Sobolev-type stochastic differential equations with Lévy noise and mixed fractional Brownian motion. Applying a method (principle) of comparability of functions by character of Shcherbakov recurrence, it characters at least one (or exactly one) solution with the same properties as the coefficients of the equation. We establish the existence of Poisson stable solutions for the Sobolev-type equation, which includes periodic solutions, quasi-periodic solutions, almost periodic solutions, almost automorphic solutions, etc. We also obtain the global asymptotical stability of bounded Poisson stable solutions and present an example to illustrate our theoretical results.

1.
F.
Blanquart
and
S.
Gandon
, “
Evolution of migration in a periodically changing environment
,”
Am. Nat.
177
(
2
),
188
201
(
2011
).
2.
V. I.
Yudovic
, “
Periodic motions of a viscous incompressible fluid
,”
Sov. Math. Dokl.
130
(
1
),
168
172
(
1960
).
3.
P.
Dutt
and
R. K.
Sharma
, “
Analysis of periodic and quasi-periodic orbits in the earth-moon system
,”
J. Guid., Control, Dyn.
33
(
3
),
1010
1017
(
2010
).
4.
H.
Poincaré
,
Les Méthodes Nouvelles de la Mécanique Céleste
(
Gauthier-Villars
,
Paris
,
1892
), Vol.
1
.
5.
S.
Bochner
, “
Beiträge zur theorie der fastperiodischen funktionen. I. Funktionen einer Variablen
,”
Math. Ann.
96
,
119
147
(
1927
).
6.
S.
Bochner
, “
A new approach to almost periodicity
,”
Proc. Natl. Acad. Sci. U. S. A.
48
,
2039
2043
(
1962
).
7.
J.
von Neumann
, “
Almost periodic functions in a group. I
,”
Trans. Am. Math. Soc.
36
,
445
492
(
1934
).
8.
E. R.
Van Kampen
, “
Almost periodic functions and compact groups
,”
Ann. Math.
37
(
1
),
78
91
(
1936
).
9.
F.
Chen
,
Y. C.
Han
et al, “
Periodic solutions of Fokker-Planck equations
,”
J. Differ. Equ.
263
(
1
),
285
298
(
2017
).
10.
M.
Ji
,
W. W.
Qi
et al, “
Existence of periodic probability solutions to Fokker-Planck equations with applications
,”
J. Funct. Anal.
277
(
11
),
108281
(
2019
).
11.
R. Z.
Khasminskii
,
Stochastic Stability of Differential Equations
(
Nauka
,
Moscow
,
1969
).
12.
H. Z.
Zhao
and
Z.
Zheng
, “
Random periodic solutions of random dynamical systems
,”
J. Differ. Equ.
246
,
2020
2038
(
2009
).
13.
L.
Arnold
and
C.
Tudor
, “
Stationary and almost periodic solutions of almost periodic affine stochastic differential equations
,”
Stochastics Stochastic Rep.
64
(
3–4
),
177
193
(
1998
).
14.
P. H.
Bezandry
and
T.
Diagana
, “
Existence of almost periodic solutions to some stochastic differential equations
,”
Appl. Anal.
86
(
7
),
819
827
(
2007
).
15.
P. H.
Bezandry
and
T.
Diagana
,
Almost Periodic Stochastic Processes
(
Springer
,
New York
,
2011
).
16.
G.
Da Prato
and
C.
Tudor
, “
Periodic and almost periodic solutions for semilinear stochastic equations
,”
Stochastic Anal. Appl.
13
(
1
),
13
33
(
1995
).
17.
Z. X.
Liu
and
W. H.
Wang
, “
Favard separation method for almost periodic stochastic differential equations
,”
J. Differ. Equ.
260
(
11
),
8109
8136
(
2016
).
18.
Y.
Li
,
Z. X.
Liu
, and
W. H.
Wang
, “
Almost periodic solutions and stable solutions for stochastic differential equations
,”
Discrete Contin. Dyn. Syst. Ser. B.
24
,
5927
5944
(
2019
).
19.
T.
Morozan
and
C.
Tudor
, “
Almost periodic solutions of affine Itô equations
,”
Stochastic Anal. Appl.
7
(
4
),
451
474
(
1989
).
20.
Y. K.
Chang
,
Z. H.
Zhao
, and
G. M.
N’Guérékata
, “
A new composition theorem for square-mean almost automorphic functions and applications to stochastic differential equations
,”
Nonlinear Anal.
74
(
6
),
2210
2219
(
2011
).
21.
J. F.
Cao
,
Q. G.
Yang
, and
Z. T.
Huang
, “
Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations
,”
Stochastics
83
(
3
),
259
275
(
2011
).
22.
Z.
Chen
and
W.
Lin
, “
Square-mean weighted pseudo almost automorphic solutions for non-autonomous stochastic evolution equations
,”
J. Math. Pures Appl.
100
(
4
),
476
504
(
2013
).
23.
M. M.
Fu
and
Z. X.
Liu
, “
Square-mean almost automorphic solutions for some stochastic differential equations
,”
Proc. Am. Math. Soc.
138
,
3689
3701
(
2010
).
24.
Q. G.
Yang
and
P.
Zhu
, “
Stepanov-like doubly weighted pseudo almost automorphic processes and its application to Sobolev-type stochastic differential equations driven by G-Brownian motion
,”
Math. Methods Appl. Sci.
40
(
18
),
6602
6622
(
2017
).
25.
M.
Cheng
and
Z. X.
Liu
, “
Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients
,”
Dyn. Syst. Ser. B.
12
,
6425
6462
(
2021
).
26.
D.
Cheban
and
Z. X.
Liu
, “
Periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent and Poisson stable solutions for stochastic differential equations
,”
J. Differ. Equ.
269
(
4
),
3652
3685
(
2020
).
27.
X.
Liu
and
Z. X.
Liu
, “
Poisson stable solutions for stochastic differential equations with Lévy noise
,”
Acta Math. Sin., Engl. Ser.
38
,
22
54
(
2022
).
28.
G.
Barenblatt
,
I.
Zheltov
, and
I.
Kochina
, “
Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]
,”
J. Appl. Math. Mech.
24
(
5
),
1286
1303
(
1960
).
29.
P. J.
Chen
and
M. E.
Gurtin
, “
On a theory of heat conduction involving two temperatures
,”
Z. Angew. Math. Phys.
19
(
4
),
614
627
(
1968
).
30.
R.
Huilgol
, “
A second order fluid of the differential type
,”
Int. J. Non-Linear Mech.
3
(
4
),
471
482
(
1968
).
31.
S.
Sobolev
, “
On a new problem of mathematical physics
,”
Izv. Akad. Nauk Ser. Mat.
18
,
3
50
(
1954
).
32.
P.
Zhu
, “
Poisson μ-pseudo almost automorphic stochastic processes and its applications to nonlinear Sobolev-type SDEs with Markov switching
,”
Math. Methods Appl. Sci.
44
(
2
),
1688
1712
(
2021
).
33.
B.
Mandelbrot
and
J. W.
Van Ness
, “
Fractional Brownian motions, fractional noises and applications
,”
SIAM Rev.
10
(
4
),
422
437
(
1968
).
34.
F.
Chen
and
X.
Zhang
, “
Almost automorphic solutions for mean-field stochastic differential equations driven by fractional Brownian motion
,”
Stochastic Anal. Appl.
37
(
1
),
1
18
(
2019
).
35.
M. A.
Diop
,
K.
Ezzinbi
, and
M. M.
Mbaye
, “
Existence and global attractiveness of a pseudo almost periodic solution in p-th mean sense for stochastic evolution equation driven by a fractional Brownian motion
,”
Stochastics.
87
(
6
),
1061
(
2015
).
36.
Y. S.
Mishura
and
G. M.
Shevchenko
, “
Existence and uniqueness of the solution of stochastic differential equation involving Wiener process and fractional Brownian motion with hurst index H>12
,”
Commun. Stat.
40
(
19–20
),
3492
3508
(
2011
).
37.
R.
Dhayal
,
M.
Malik
,
S.
Abbas
, and
A.
Debbouche
, “
Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses
,”
Math. Method Appl. Sci.
43
(
7
),
4107
4124
(
2020
).
38.
P.
Balasubramaniam
, “
Hilfer fractional stochastic system driven by mixed Brownian motion and Lévy noise suffered by non-instantaneous impulses
,”
Stochastic Anal. Appl.
41
(
1
),
60
79
(
2023
).
39.
D. D.
Huan
and
R. P.
Agarwal
, “
Controllability for impulsive neutral stochastic delay partial differential equations driven by fBm and Lévy noise
,”
Stochastics Dyn.
21
(
02
),
2150013
(
2021
).
40.
H.
Kunita
, “
Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms
,” in
Real and Stochastic Analysis
(
Birkhäuser
,
Boston
,
2004
).
41.
D.
Nualart
,
The Malliavin Calculus and Related Topics
(
Springer-Verlag
,
New York
,
1995
).
42.
B.
Boufoussi
and
S.
Hajji
, “
Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space
,”
Statistics Probab. Lett.
82
(
8
),
1549
1558
(
2012
).
43.
V. V.
Anh
and
W.
Grecksch
, “
A fractional stochastic evolution equation driven by fractional Brownian motion
,”
Monte Carlo Methods Appl.
9
(
3
),
189
199
(
2003
).
44.
D.
Applebum
,
Lévy Processes and Stochastic Calculus
(
Cambridge University Press
,
Cambridge
,
2004
).
45.
H.
Bergström
, “
Weak convergence of measures
,” in
Probability and Mathematical Statistics
(
Academic Press, Inc.
,
1982
).
46.
Y.
Mishura
,
Stochastic Calculus for Fractional Brownian Motion and Related Processes
(
Springer-Verlag
,
Berlin
,
2008
).
47.
G.
Prato
and
J.
Zabczyk
,
Stochastic Equations in Infinite Dimensions
(
Cambridge University Press
,
Cambridge
,
1992
).
48.
B. A.
Shcherbakov
, “
Topologic dynamics and Poisson stability of solutions of differential equations
” (
Kishinev, Ştiinţǎ
,
1972
), (in Russian).
49.
B. A.
Shcherbakov
, “
Poisson stability of motions of dynamical systems and solutions of differential equations
” (
Kishinev, Ştiinţǎ
,
1985
), (in Russian).
50.
G. R.
Sell
,
Topological Dynamics and Ordinary Differential Equations
(
Van Nostrand Reinhold Company
,
London
,
1971
).
51.
K.
Sibirsky
,
Introduction to Topological Dynamics
(
Noordhoff International Publishing
,
Leiden
,
1975
).
52.
C.
Tudor
, “
Almost periodic stochastic processes
,” in
Qualitative Problems for Differential Equations and Control Theory
(
World Scientific Publishing
,
River Edge, NJ
,
1995
).
53.
B. A.
Shcherbakov
, “
The comparability of the motions of dynamical systems with regard to the nature of their recurrence
” (
Differentsial’nye Uravneniya
,
NJ
,
1975
), Vol.
11
(
7
), pp.
1246
1255
.
54.
E. H.
Lieb
, “
Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities
,”
Ann. Math.
118
(
2
),
349
374
(
1983
).
55.
Z. X.
Liu
and
K.
Sun
, “
Almost automorphic solutions for stochastic differential equations driven by Lévy noise
,”
J. Funct. Anal.
266
(
3
),
1115
1149
(
2014
).
56.
C.
Burgos
,
J. C.
Cortés
,
A.
Debbouche
,
L.
Villafuerte
, and
R. J.
Villanueva
, “
Random fractional generalized Airy differential equations: A probabilistic analysis using mean square calculus
,”
Appl. Math. Comput.
352
,
15
29
(
2019
).
57.
V.
Kumar
,
M.
Malik
, and
A.
Debbouche
, “
Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses
,”
Appl. Math. Comput.
391
,
125633
(
2021
).
58.
H.
Kim
,
R.
Sakthivel
,
A.
Debbouche
, and
D. F. M.
Torres
, “
Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations
,”
Chaos, Solitons Fractals
131
,
109542
(
2020
).
You do not currently have access to this content.