We propose a systematic generating procedure to construct free Lagrangians for massive, massless and partially massless, totally-symmetric tensor fields on AdSd+1 starting from the Becchi–Rouet–Stora–Tyutin (BRST) Lagrangian description of massless fields in the flat ambient space Rd,2. A novelty is that the Lagrangian is described by a d + 1 form on Rd,2 whose pullback to AdSd+1 gives the genuine Lagrangian defined on anti de Sitter spacetime. Our derivation uses the triplet formulation originating from the first-quantized BRST approach, where the action principle is determined by the BRST operator and the inner product of a first-quantised system. In this way we build, in a manifestly so(2, d)-covariant manner, a unifying action principle for the three types of fields mentioned above. In particular, our derivation justifies the form of some actions proposed earlier for massive and massless fields on (anti)-de Sitter. We also give a general setup for ambient Lagrangians in terms of the respective jet-bundles and variational bi-complexes. In particular we introduce a suitable ambient-space Euler–Lagrange differential which allows one to derive the equations of motion ambiently, i.e., without the need to explicitly derive the respective spacetime Lagrangian.

1.
Fierz
,
M.
and
Pauli
,
W.
, “
On relativistic wave equations for particles of arbitrary spin in an electromagnetic field
,”
Proc. R. Soc. London, Ser. A
173
,
211
232
(
1939
).
2.
Singh
,
L. P. S.
and
Hagen
,
C. R.
, “
Lagrangian formulation for arbitrary spin. I. The boson case
,”
Phys. Rev. D
9
,
898
909
(
1974
).
3.
Singh
,
L. P. S.
and
Hagen
,
C. R.
, “
Lagrangian formulation for arbitrary spin. II. The fermion case
,”
Phys. Rev. D
9
,
910
920
(
1974
).
4.
Fronsdal
,
C.
, “
Massless fields with integer spin
,”
Phys. Rev. D
18
,
3624
(
1978
).
5.
Fang
,
J.
and
Fronsdal
,
C.
, “
Massless fields with half-integral spin
,”
Phys. Rev. D
18
,
3630
(
1978
).
6.
Vasiliev
,
M. A.
, “‘
Gauge’ form of description of massless fields with arbitrary spin
,”
Yad. Fiz.
32
,
855
861
(
1980
).
7.
Lopatin
,
V. E.
and
Vasiliev
,
M. A.
, “
Free massless bosonic fields of arbitrary spin in d-dimensional de Sitter space
,”
Mod. Phys. Lett. A
3
,
257
(
1988
).
8.
Fronsdal
,
C.
, “
Singletons and massless, integral-spin fields on de Sitter space
,”
Phys. Rev. D
20
,
848
856
(
1979
).
9.
Hallowell
,
K.
and
Waldron
,
A.
, “
Constant curvature algebras and higher spin action generating functions
,”
Nucl. Phys. B
724
,
453
486
(
2005
); arXiv:hep-th/0505255.
10.
Zinoviev
,
Y.
, “
On massive high spin particles in (A)dS
,” arXiv:hep-th/0108192 (
2001
).
11.
Metsaev
,
R. R.
, “
Massive totally symmetric fields in AdSd
,”
Phys. Lett. B
590
,
95
104
(
2004
); arXiv:hep-th/0312297.
12.
Skvortsov
,
E. D.
and
Vasiliev
,
M. A.
, “
Geometric formulation for partially massless fields
,”
Nucl. Phys. B
756
,
117
147
(
2006
); arXiv:hep-th/0601095.
13.
Zinoviev
,
Y. M.
, “
Frame-like gauge invariant formulation for massive high spin particles
,”
Nucl. Phys. B
808
,
185
204
(
2009
); arXiv:0808.1778 [hep-th].
14.
Ponomarev
,
D. S.
and
Vasiliev
,
M. A.
, “
Frame-like action and unfolded formulation for massive higher-spin fields
,”
Nucl. Phys. B
839
,
466
498
(
2010
); arXiv:1001.0062 [hep-th].
15.
Dirac
,
P. A. M.
, “
The electron wave equation in de-Sitter space
,”
Ann. Math.
36
,
657
669
(
1935
).
16.
Biswas
,
T.
and
Siegel
,
W.
, “
Radial dimensional reduction: (Anti) de Sitter theories from flat
,”
J. High Energy Phys.
2002
(
07
),
005
; arXiv:hep-th/0203115.
17.
Metsaev
,
R. R.
, “
Massless mixed-symmetry bosonic free fields in d-dimensional anti-de Sitter space-time
,”
Phys. Lett. B
354
,
78
84
(
1995
).
18.
Metsaev
,
R. R.
, “
Arbitrary spin massless bosonic fields in d-dimensional anti-de Sitter space
,”
Lect. Notes Phys.
524
,
331
340
(
1999
); arXiv:hep-th/9810231.
19.
Boulanger
,
N.
,
Iazeolla
,
C.
, and
Sundell
,
P.
, “
Unfolding mixed-symmetry fields in AdS and the BMV conjecture: II. Oscillator realization
,”
J. High Energy Phys.
2009
(
07
),
014
; arXiv:0812.4438 [hep-th].
20.
Fefferman
,
C.
and
Graham
,
C. R.
, “
The ambient metric
,”
Ann. Math. Stud.
178
,
1
128
(
2011
); arXiv:0710.0919 [math.DG].
21.
Scherk
,
J.
and
Schwarz
,
J. H.
, “
How to get masses from extra dimensions
,”
Nucl. Phys. B
153
,
61
88
(
1979
).
22.
Barnich
,
G.
and
Grigoriev
,
M.
, “
Parent form for higher spin fields on anti-de Sitter space
,”
J. High Energy Phys.
2006
(
08
),
013
; arXiv:hep-th/0602166.
23.
Alkalaev
,
K. B.
and
Grigoriev
,
M.
, “
Unified BRST description of AdS gauge fields
,”
Nucl. Phys. B
835
,
197
220
(
2010
); arXiv:0910.2690 [hep-th].
24.
Alkalaev
,
K.
and
Grigoriev
,
M.
, “
Unified BRST approach to (partially) massless and massive AdS fields of arbitrary symmetry type
,”
Nucl. Phys. B
853
,
663
687
(
2011
); arXiv:1105.6111 [hep-th].
25.
Fradkin
,
E. S.
and
Vilkovisky
,
G. A.
, “
Quantization of relativistic systems with constraints: Equivalence of canonical and covariant formalisms in quantum theory of gravitational field
,” Report No. CERN-TH-2332,
6
, (
1977
).
26.
Batalin
,
I. A.
and
Vilkovisky
,
G. A.
, “
Relativistic S-matrix of dynamical systems with boson and fermion constraints
,”
Phys. Lett. B
69
,
309
312
(
1977
).
27.
Fradkin
,
E. S.
and
Fradkina
,
T. E.
, “
Quantization of relativistic systems with boson and fermion first- and second-class constraints
,”
Phys. Lett. B
72
,
343
348
(
1978
).
28.
Batalin
,
I. A.
and
Vilkovisky
,
G. A.
, “
Gauge algebra and quantization
,”
Phys. Lett. B
102
,
27
31
(
1981
).
29.
Batalin
,
I. A.
and
Vilkovisky
,
G. A.
, “
Quantization of gauge theories with linearly dependent generators
,”
Phys. Rev. D
28
,
2567
2582
(
1983
);
30.
Becchi
,
C.
,
Rouet
,
A.
, and
Stora
,
R.
, “
Renormalization of the abelian Higgs-Kibble model
,”
Commun. Math. Phys.
42
,
127
162
(
1975
).
31.
Becchi
,
C.
,
Rouet
,
A.
, and
Stora
,
R.
, “
Renormalization of gauge theories
,”
Ann. Phys.
98
,
287
321
(
1976
).
32.
Tyutin
,
I. V.
, “
Gauge invariance in field theory and statistical physics in operator formalism
,”
Preprint of P. N. Labedev Physical Institute
, No. 39, 1975; arXiv:0812.0580 [hep-th] (
1975
).
33.
Neveu
,
A.
and
West
,
P. C.
, “
Gauge covariant local formulation of bosonic strings
,”
Nucl. Phys. B
268
,
125
150
(
1986
).
34.
Neveu
,
A.
,
Nicolai
,
H.
, and
West
,
P. C.
, “
Gauge covariant local formulation of free strings and superstrings
,”
Nucl. Phys. B
264
,
573
587
(
1986
).
35.
Banks
,
T.
and
Peskin
,
M. E.
, “
Gauge invariance of string fields
,”
Nucl. Phys. B
264
,
513
547
(
1986
).
36.
Siegel
,
W.
and
Zwiebach
,
B.
, “
Gauge string fields
,”
Nucl. Phys. B
263
,
105
128
(
1986
).
37.
Itoh
,
K.
,
Kugo
,
T.
,
Kunitomo
,
H.
, and
Ooguri
,
H.
, “
Gauge invariant local action of string field from BRS formalism
,”
Prog. Theor. Phys.
75
,
162
(
1986
).
38.
Bengtsson
,
A. K. H.
, “
A unified action for higher spin gauge bosons from covariant string theory
,”
Phys. Lett. B
182
,
321
325
(
1986
).
39.
Ouvry
,
S.
and
Stern
,
J.
, “
Gauge fields of any spin and symmetry
,”
Phys. Lett. B
177
,
335
340
(
1986
).
40.
Henneaux
,
M.
and
Teitelboim
,
C.
, “
First and second quantized point particles of any spin
,” in
2nd Meeting on Quantum Mechanics of Fundamental Systems (CECS)
,
1987
.
41.
Bengtsson
,
A. K. H.
, “
BRST quantization in anti-de Sitter space and gauge fields
,”
Nucl. Phys. B
333
,
407
418
(
1990
).
42.
Buchbinder
,
I. L.
,
Pashnev
,
A.
, and
Tsulaia
,
M.
, “
Lagrangian formulation of the massless higher integer spin fields in the AdS background
,”
Phys. Lett. B
523
,
338
346
(
2001
); arXiv:hep-th/0109067.
43.
Bonelli
,
G.
, “
On the covariant quantization of tensionless bosonic strings in AdS spacetime
,”
J. High Energy Phys.
2003
(
11
),
028
; arXiv:hep-th/0309222.
44.
Sagnotti
,
A.
and
Tsulaia
,
M.
, “
On higher spins and the tensionless limit of string theory
,”
Nucl. Phys. B
682
,
83
116
(
2004
); arXiv:hep-th/0311257.
45.
Buchbinder
,
I.
,
Krykhtin
,
V.
, and
Lavrov
,
P.
, “
Gauge invariant Lagrangian formulation of higher spin massive bosonic field theory in AdS space
,”
Nucl. Phys. B
762
,
344
376
(
2007
); arXiv:hep-th/0608005.
46.
Reshetnyak
,
A.
and
Moshin
,
P.
, “
Gauge invariant Lagrangian formulations for mixed symmetry higher spin bosonic fields in AdS spaces
,”
Universe
9
(
12
),
495
(
2023
); arXiv:2305.00142 [hep-th] (
2023
).
47.
Fotopoulos
,
A.
,
Panigrahi
,
K. L.
, and
Tsulaia
,
M.
, “
Lagrangian formulation of higher spin theories on AdS space
,”
Phys. Rev. D
74
,
085029
(
2006
); arXiv:hep-th/0607248.
48.
Fotopoulos
,
A.
and
Tsulaia
,
M.
, “
Gauge invariant Lagrangians for free and interacting higher spin fields. A review of the BRST formulation
,”
Int. J. Mod. Phys. A
24
,
1
60
(
2009
); arXiv:0805.1346 [hep-th].
49.
Buchbinder
,
I. L.
and
Reshetnyak
,
A. A.
, “
General cubic interacting vertex for massless integer higher spin fields
,”
Phys. Lett. B
820
,
136470
(
2021
); arXiv:2105.12030 [hep-th].
50.
Buchbinder
,
I. L.
and
Reshetnyak
,
A. A.
, “
Covariant cubic interacting vertices for massless and massive integer higher spin fields
,”
Symmetry
15
(
12
),
2124
(
2023
); arXiv:2212.07097 [hep-th] (
2022
).
51.
Barnich
,
G.
and
Grigoriev
,
M.
, “
Hamiltonian BRST and Batalin-Vilkovisky formalisms for second quantization of gauge theories
,”
Commun. Math. Phys.
254
,
581
601
(
2005
); arXiv:hep-th/0310083.
52.
Barnich
,
G.
,
Grigoriev
,
M.
,
Semikhatov
,
A.
, and
Tipunin
,
I.
, “
Parent field theory and unfolding in BRST first-quantized terms
,”
Commun. Math. Phys.
260
,
147
181
(
2005
); arXiv:hep-th/0406192.
53.
Grigoriev
,
M.
, “
Parent formulation at the Lagrangian level
,”
J. High Energy Phys.
2011
(
07
),
061
; arXiv:1012.1903 [hep-th].
54.
Thorn
,
C. B.
, “
String field theory
,”
Phys. Rep.
175
,
1
101
(
1989
).
55.
Bochicchio
,
M.
, “
Gauge fixing for the field theory of the bosonic string
,”
Phys. Lett. B
193
,
31
(
1987
).
56.
Joung
,
E.
and
Taronna
,
M.
, “
Cubic interactions of massless higher spins in (A)dS: Metric-like approach
,”
Nucl. Phys. B
861
,
145
174
(
2012
); arXiv:1110.5918 [hep-th].
57.
Joung
,
E.
,
Lopez
,
L.
, and
Taronna
,
M.
, “
On the cubic interactions of massive and partially-massless higher spins in (A)dS
,”
J. High Energy Phys.
2012
(
07
),
041
; arXiv:1203.6578 [hep-th].
58.
Joung
,
E.
,
Lopez
,
L.
, and
Taronna
,
M.
, “
Solving the Noether procedure for cubic interactions of higher spins in (A)dS
,”
J. Phys. A: Math. Theor.
46
,
214020
(
2013
); arXiv:1207.5520 [hep-th].
59.
Bekaert
,
X.
and
Oblak
,
B.
, “
Massless scalars and higher-spin BMS in any dimension
,”
J. High Energy Phys.
2022
(
11
),
022
; arXiv:2209.02253 [hep-th].
60.
Chekmenev
,
A.
, “
Lagrangian BRST formulation of massive higher spin fields of generic symmetry type
,”
Theor. Math. Phys.
2
,
1599
1619
(
2021
); arXiv:1912.12079 [hep-th] (
2019
).
61.
Metsaev
,
R. R.
, “
BRST-BV approach to cubic interaction vertices for massive and massless higher-spin fields
,”
Phys. Lett. B
720
,
237
243
(
2013
); arXiv:1205.3131 [hep-th].
62.
Metsaev
,
R. R.
, “
Cubic interaction vertices for continuous-spin fields and arbitrary spin massive fields
,”
J. High Energy Phys.
2017
(
11
),
197
; arXiv:1709.08596 [hep-th].
63.
Francia
,
D.
and
Sagnotti
,
A.
, “
On the geometry of higher-spin gauge fields
,”
Classical Quantum Gravity
20
,
S473
S485
(
2003
); arXiv:hep-th/0212185.
64.
Alkalaev
,
K. B.
,
Grigoriev
,
M.
, and
Tipunin
,
I. Y.
, “
Massless Poincare modules and gauge invariant equations
,”
Nucl. Phys. B
823
,
509
545
(
2009
); arXiv:0811.3999 [hep-th].
65.
Bekaert
,
X.
,
Buchbinder
,
I. L.
,
Pashnev
,
A.
, and
Tsulaia
,
M.
, “
On higher spin theory: Strings, BRST, dimensional reductions
,”
Classical Quantum Gravity
21
,
S1457
S1463
(
2004
); arXiv:hep-th/0312252.
66.
Deser
,
S.
and
Waldron
,
A.
, “
Partial masslessness of higher spins in (A)dS
,”
Nucl. Phys. B
607
,
577
604
(
2001
); arXiv:hep-th/0103198.
67.
Anderson
,
I. M.
, “
Introduction to the variational bicomplex
,”
Contemp. Math.
132
,
51
73
(
1992
).
68.
Bekaert
,
X.
and
Meunier
,
E.
, “
Higher spin interactions with scalar matter on constant curvature spacetimes: Conserved current and cubic coupling generating functions
,”
J. High Energy Phys.
2010
(
11
),
116
; arXiv:1007.4384 [hep-th].
You do not currently have access to this content.