We propose a systematic generating procedure to construct free Lagrangians for massive, massless and partially massless, totally-symmetric tensor fields on AdSd+1 starting from the Becchi–Rouet–Stora–Tyutin (BRST) Lagrangian description of massless fields in the flat ambient space . A novelty is that the Lagrangian is described by a d + 1 form on whose pullback to AdSd+1 gives the genuine Lagrangian defined on anti de Sitter spacetime. Our derivation uses the triplet formulation originating from the first-quantized BRST approach, where the action principle is determined by the BRST operator and the inner product of a first-quantised system. In this way we build, in a manifestly so(2, d)-covariant manner, a unifying action principle for the three types of fields mentioned above. In particular, our derivation justifies the form of some actions proposed earlier for massive and massless fields on (anti)-de Sitter. We also give a general setup for ambient Lagrangians in terms of the respective jet-bundles and variational bi-complexes. In particular we introduce a suitable ambient-space Euler–Lagrange differential which allows one to derive the equations of motion ambiently, i.e., without the need to explicitly derive the respective spacetime Lagrangian.
Skip Nav Destination
Ambient-space variational calculus for gauge fields on constant-curvature spacetimes
,
,
,
Article navigation
April 2024
Research Article|
April 18 2024
Ambient-space variational calculus for gauge fields on constant-curvature spacetimes
Xavier Bekaert;
Xavier Bekaert
a)
(Writing – original draft)
1
Institut Denis Poisson, Unité Mixte de Recherche 7013, CNRS, Université de Tours, Université d’Orléans
, Parc de Grandmont, 37200 Tours, France
Search for other works by this author on:
Nicolas Boulanger
;
Nicolas Boulanger
b)
(Writing – original draft)
2
Physique de l’Univers, Champs et Gravitation, Université de Mons–UMONS
, Place du Parc 20, 7000 Mons, Belgium
b)Author to whom correspondence should be addressed: [email protected]
Search for other works by this author on:
Yegor Goncharov;
Yegor Goncharov
c)
(Writing – original draft)
1
Institut Denis Poisson, Unité Mixte de Recherche 7013, CNRS, Université de Tours, Université d’Orléans
, Parc de Grandmont, 37200 Tours, France
2
Physique de l’Univers, Champs et Gravitation, Université de Mons–UMONS
, Place du Parc 20, 7000 Mons, Belgium
Search for other works by this author on:
Maxim Grigoriev
Maxim Grigoriev
d)
(Writing – original draft)
3
I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute
, Leninsky Ave. 53, 119991 Moscow, Russia
Search for other works by this author on:
Xavier Bekaert
1,a)
Nicolas Boulanger
2,b)
Yegor Goncharov
1,2,c)
Maxim Grigoriev
3,d)
1
Institut Denis Poisson, Unité Mixte de Recherche 7013, CNRS, Université de Tours, Université d’Orléans
, Parc de Grandmont, 37200 Tours, France
2
Physique de l’Univers, Champs et Gravitation, Université de Mons–UMONS
, Place du Parc 20, 7000 Mons, Belgium
3
I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute
, Leninsky Ave. 53, 119991 Moscow, Russia
b)Author to whom correspondence should be addressed: [email protected]
a)
Electronic mail: [email protected]
c)
Electronic mail: [email protected]
d)
Electronic mail: [email protected]
J. Math. Phys. 65, 042301 (2024)
Article history
Received:
May 26 2023
Accepted:
March 04 2024
Citation
Xavier Bekaert, Nicolas Boulanger, Yegor Goncharov, Maxim Grigoriev; Ambient-space variational calculus for gauge fields on constant-curvature spacetimes. J. Math. Phys. 1 April 2024; 65 (4): 042301. https://doi.org/10.1063/5.0159769
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Well-posedness and decay structure of a quantum hydrodynamics system with Bohm potential and linear viscosity
Ramón G. Plaza, Delyan Zhelyazov
The BRST quantisation of chiral BMS-like field theories
José M. Figueroa-O’Farrill, Girish S. Vishwa
A sufficient criterion for divisibility of quantum channels
Frederik vom Ende
Related Content
Universal low temperature theory of charged black holes with AdS2 horizons
J. Math. Phys. (May 2019)
Stückelberg-modified massive Abelian 3-form theory: Constraint analysis, conserved charges and BRST algebra
J. Math. Phys. (September 2024)
The Maurer–Cartan structure of BRST differentials
J. Math. Phys. (May 2005)
Noether’s second theorem for BRST symmetries
J. Math. Phys. (May 2005)
Quantum BRST charge in gauge theories in curved space-time
J. Math. Phys. (January 2019)