We will investigate the α-z-Rényi divergence in the general von Neumann algebra setting based on Haagerup non-commutative Lp-spaces. In particular, we establish almost all its expected properties when 0 < α < 1 and some of them when α > 1. In an Appendix we also give an equality condition for generalized Hölder’s inequality in Haagerup non-commutative Lp-spaces.

1.
H.
Umegaki
, “
Conditional expectation in an operator algebra. IV. Entropy and information
,”
Kodai Math. J.
14
,
59
(
1962
).
3.
M.
Müller-Lennert
,
F.
Dupuis
,
O.
Szehr
,
S.
Fehr
, and
M.
Tomamichel
,
J. Math. Phys.
54
,
122203
(
2013
).
4.
M. M.
Wilde
,
A.
Winter
, and
D.
Yang
,
Commun. Math. Phys.
331
,
593
(
2014
).
5.
S.
Beigi
,
J. Math. Phys.
54
,
122202
122211
(
2013
).
6.
R. L.
Frank
and
E. H.
Lieb
,
J. Math. Phys.
54
,
122201
(
2013
).
7.
K. M. R.
Audenaert
and
N.
Datta
,
J. Math. Phys.
56
,
022202
(
2015
).
8.
V.
Jakšić
,
Y.
Ogata
,
Y.
Pautrat
, and
C.-A.
Pillet
,
Quantum Theory from Small to Large Scales: Lecture Notes of the Les Houches Summer School
(
Oxford University Press
,
2012
), Vol.
95
.
9.
E. A.
Carlen
,
R. L.
Frank
, and
E. H.
Lieb
,
J. Phys. A: Math. Theor.
51
,
483001
(
2018
).
11.
H.
Araki
,
Publ. Res. Inst. Math. Sci.
11
,
809
(
1975
).
12.
H.
Araki
,
Publ. Res. Inst. Math. Sci.
13
,
173
(
1977
).
13.
F.
Hiai
,
J. Math. Phys.
59
,
102202
102227
(
2018
).
14.
D.
Petz
,
Publ. Res. Inst. Math. Sci.
21
,
787
(
1985
).
15.
M.
Berta
,
V. B.
Scholz
, and
M.
Tomamichel
,
Ann. Henri Poincaré
19
,
1843
(
2018
).
16.
A.
Jenčová
,
Ann. Henri Poincaré
19
,
2513
(
2018
).
17.
A.
Jenčová
,
Ann. Henri Poincaré
22
,
3235
(
2021
).
18.
F.
Hiai
,
Quantum f-divergences in von Neumann algebras—Reversibility of quantum operations
,
Mathematical Physics Studies
(
Springer
,
Singapore
,
2021
), p.
x+194
.
19.
M.
Mosonyi
,
Commun. Math. Phys.
400
,
83
(
2023
).
20.
T.
Zhang
,
X.
Qi
, and
J.
Banach
,
Banach J. Math. Anal.
17
,
22
(
2023
).
21.
S.
Kato
and
Y.
Ueda
, “
A remark on non-commutative Lp-spaces
,” arXiv:2307.01790 [math.OA] (
2023
), Studia Math., to appear.
22.
M.
Terp
, “
Lp spaces associated with von Neumann algebras. notes
,” Copenhagen University Lecture Notes, unpublished.
23.
F.
Hiai
,
Lectures on selected topics in von Neumann algebras
,
EMS Series of Lectures in Mathematics
(
EMS Press
,
Berlin
,
2021
), p.
viii+241
.
24.
T.
Fack
and
H.
Kosaki
,
Pacific J. Math.
123
,
269
(
1986
).
25.
F.
Hiai
and
Y.
Nakamura
,
Pacific J. Math.
138
,
259
(
1989
).
26.
27.
F.
Hiai
and
M.
Mosonyi
,
Ann. Henri Poincaré
24
,
1681
(
2023
).
28.
M. D.
Choi
,
Illinois J. Math.
18
,
565
(
1974
).
30.

In this case, LHS of (15) = ∞ and RHS of (15) = 0 if we use the convention 0 · ∞ = 0. However, both the sides of (16) equal ∞ when μ = 0.

31.
J. B.
Conway
,
A Course in Functional Analysis
,
Graduate Texts in Mathematics
, 2nd ed. (
Springer-Verlag
,
New York
,
1990
), Vol.
96
, p.
xvi+399
.
32.
Ş.
Strătilă
,
Modular Theory in Operator Algebras
(
Editura Academiei Republicii Socialiste România, Bucharest; Abacus Press
,
Tunbridge Wells
,
1981
), p.
492
, translated from the Romanian by the author.
33.
E. A.
Carlen
and
E. H.
Lieb
,
Lett. Math. Phys.
83
,
107
(
2008
).
34.
E. A.
Carlen
and
H.
Zhang
,
Linear Algebra Appl.
654
,
289
(
2022
).
35.
G.
Larotonda
,
Math. Proc. R. Irish Acad.
118A
,
1
(
2018
).
You do not currently have access to this content.