A time operator T̂ϵ of the one-dimensional harmonic oscillator ĥϵ=12(p2+ϵq2) is rigorously constructed. It is formally expressed as T̂ϵ=121ϵ(arctan(ϵt̂0)+arctan(ϵt̂1)) with t̂0=p1q and t̂1=qp1. It is shown that the canonical commutation relation [hϵ,T̂ϵ]=i1 holds true on a dense domain in the sense of sesqui-linear forms, and the limit of T̂ϵ as ϵ → 0 is shown. Finally a matrix representation of T̂ϵ and its analytic continuation are given.

1.
Y.
Aharonov
and
D.
Bohm
, “
Time in the quantum theory and the uncertainty relation for time and energy
,”
Phys. Rev.
122
,
1649
1658
(
1961
).
2.
A.
Arai
, “
Generalized weak Weyl relation and decay of quantum dynamics
,”
Rev. Math. Phys.
17
,
1071
1109
(
2005
).
3.
A.
Arai
, “
Necessary and sufficient conditions for a Hamiltonian with discrete eigenvalues to have time operators
,”
Lett. Math. Phys.
87
,
67
80
(
2009
).
4.
A.
Arai
,
Inequivalent Representations of Canonical Commutation and Anti-commutation Relations
(
Springer
,
2020
).
5.
A.
Arai
and
F.
Hiroshima
, “
Ultra-weak time operators of Schrödinger operators
,”
Ann. Henri Poincaré
18
,
2995
3033
(
2017
).
6.
A.
Arai
and
Y.
Matsuzawa
, “
Time operators of a Hamiltonian with purely discrete spectrum
,”
Rev. Math. Phys.
20
,
951
978
(
2008
).
7.
M.
Bauer
, “
A time operator in quantum mechanics
,”
Ann. Phys.
150
,
1
21
(
1983
).
8.
C. M.
Bender
and
G. V.
Dunne
, “
Polynomials and operator orderings
,”
J. Math. Phys.
29
,
1727
1731
(
1988
).
9.
C. M.
Bender
and
G. V.
Dunne
, “
Exact solutions to operator differential equations
,”
Phys. Rev. D
40
,
2739
2742
(
1989
).
10.
C. M.
Bender
and
G. V.
Dunne
, “
Integration of operator differential equations
,”
Phys. Rev. D
40
,
3504
3511
(
1989
).
11.
C. M.
Bender
and
M.
Gianfreda
, “
Matrix representation of the time operator
,”
J. Math. Phys.
53
,
062102
(
2012
).
12.
C. M.
Bender
,
L. R.
Mead
, and
S. S.
Pinsky
, “
Continuous Hahn polynomials and the Heisenberg algebra
,”
J. Math. Phys.
28
,
509
513
(
1987
).
13.
F.
Cannata
and
L.
Ferrari
, “
Canonical conjugate momentum of discrete label operators in quantum mechanics I: Formalism
,”
Found. Phys. Lett.
4
,
557
568
(
1991
).
14.
F.
Cannata
and
L.
Ferrari
, “
Canonical conjugate momentum of discrete label operators in quantum mechanics II: Formalism
,”
Found. Phys. Lett.
4
,
569
579
(
1991
).
15.
P.
Carruthers
and
M. M.
Nieto
, “
Phase and angle variables in quantum mechanics
,”
Rev. Mod. Phys.
40
,
411
440
(
1968
).
16.
G.
Dorfmeister
and
J.
Dorfmeister
, “
Classification of certain pair of operators (P, Q) satisfying [PQQP] = −i
,”
J. Funct. Anal.
57
,
301
328
(
1984
).
17.
B.
Fuglede
, “
On the relation PQQP = −iI
,”
Math. Scand.
20
,
79
88
(
1967
).
18.
E. A.
Galapon
, “
Pauli’s theorem and quantum canonical pairs: The consistency of a bounded, self–adjoint time operator canonically conjugate to a Hamiltonian with non–empty point spectrum
,”
Proc. R. Soc. Lond. A
458
,
451
472
(
2002
).
19.
E. A.
Galapon
, “
Self-adjoint time operator is the rule for discrete semi-bounded Hamiltonians
,”
Proc. R. Soc. Lond. A
458
,
2671
2689
(
2002
).
20.
E. A.
Galapon
,
R. F.
Caballar
, and
R. T. B.
Jr
, “
Confined quantum time of arrivals
,”
Phys. Rev. Lett.
93
,
180406
(
2004
).
21.
E. A.
Galapon
,
R. F.
Caballar
, and
R.
Bahague
, “
Confined quantum time of arrival for the vanishing potential
,”
Phys. Rev. A
72
,
062107
(
2005
).
22.
T.
Goto
,
K.
Yamaguchi
, and
N.
Sudo
, “
On the time operator in quantum mechanics: Three typical examples
,”
Prog. Theor. Phys.
66
,
1525
1538
(
1981
).
23.
T.
Goto
,
S.
Naka
, and
K.
Yamaguchi
, “
On the time operator in quantum mechanics. II: -- General prescription in one dimensional case --
,”
Prog. Theor. Phys.
66
,
1915
1925
(
1981
).
24.
G. H.
Hardy
,
J. L.
Littlewood
, and
G.
P’olya
,
Inequalities
(
Cambridge University Press
,
1934
).
25.
W.
Heisenberg
, “
Über den anschaulichen Inhalt der quantentheoretischen kinematik und mechanik
,”
Z. Physik
43
,
172
198
(
1927
).
26.
F.
Hiroshima
and
N.
Teranishi
, “
Conjugate operators of 1D-harmonic oscillator
,” arXiv:2404.12286 (
2024
).
27.
B.
Leaf
, “
Canonical operators for the simple harmonic oscillator
,”
J. Math. Phys.
10
,
1980
1987
(
1969
).
28.
L.
Mandelstam
and
I. G.
Tamm
, “
The uncertainty relation between energy and time in non-relativistic quantum mechanics
,”
J. Phys.
9
,
249
254
(
1945
).
29.
M.
Miyamoto
, “
A generalized Weyl relation approach to the time operator and its connection to the survival probability
,”
J. Math. Phys.
42
,
1038
1052
(
2001
).
30.
D. T.
Pegg
and
S. M.
Barnett
, “
Phase properties of the quantized single-mode electromagnetic field
,”
Phys. Rev. A
39
,
1665
1675
(
1989
).
31.
C. R.
Putnam
,
Commutation Properties of Hilbert Space Operators and Related Topics
(
Springer
,
1967
).
32.
H. R.
Lewis
and
W. E.
Lawrence
, A Reply to the Comment by, T. B. Smith, and J. A. Vaccaro,
Phys. Rev. Lett.
80
,
2746
(
1998
).
33.
H. R.
Lewis
,
W. E.
Lawrence
, and
J. D.
Harris
, “
Quantum action-angle variables for the harmonic oscillator
,”
Phys. Rev. Lett.
77
,
5157
5159
(
1996
).
34.
M.
Razavy
, “
Quantum-mechanical time operator
,”
Am. J. Phys.
35
,
955
960
(
1967
).
35.
D.
Rosenbaum
, “
Super hilbert space and the quantum- mechanical time operators
,”
J. Math. Phys.
10
,
1127
1144
(
1969
).
36.
K.
Schmüdgen
, “
On the Heisenberg commutation relaton. I
,”
J. Funct. Anal.
50
,
8
49
(
1983
).
37.
K.
Schmüdgen
,
On the Heisenberg Commutation Relaton. II
(
Publ RIMS Kyoto
,
1983
), Vol.
19
, pp.
601
671
.
38.
T. B.
Smith
and
J. A.
Vaccaro
, “
Comment on ‘Quantum action-angle variables for the harmonic oscillator,’
Phys. Rev. Lett.
80
,
2745
(
1998
).
39.
L.
Susskind
and
J.
Glogower
, “
Quantum mechanical phase and time operator
,”
Physics
1
,
49
61
(
1964
).
40.
N.
Teranishi
, “
A note on time operators
,”
Lett. Math. Phys.
106
,
1259
1263
(
2016
).
41.
J. V.
Neumann
, “
Die Eindeutigkeit der Schrödingerschen operatoren
,”
Math.Ann.
104
,
570
578
(
1931
).
You do not currently have access to this content.