In this paper, we investigate the affine ageing algebra agê(1), which is a central extension of the loop algebra of the one-spatial ageing algebra age(1). Certain Verma-type modules including Verma modules and imaginary Verma modules of agê(1) are studied. Particularly, the simplicity of these modules are characterized and their irreducible quotient modules are determined. We also study the restricted modules of agê(1) which are also the modules of the affine vertex algebra arising from the one-spatial ageing algebra age(1). We present certain constructions of simple restricted agê(1)-modules and an explicit such example of simple restricted module via the Whittaker module of agê(1) is given.

1.
M.
Henkel
, “
Local scale invariance and strongly anisotropic equilibrium critical systems
,”
Phys. Rev. Lett.
78
(
10
),
1940
1943
(
1997
).
2.
A.
Picone
and
M.
Henkel
, “
Local scale-invariance and ageing in noisy systems
,”
Nucl. Phys. B
688
(
3
),
217
265
(
2004
).
3.
W.
Fushchich
,
W.
Shtelen
, and
N.
Serov
,
Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics
(
Kluwer Academic Publishers Group
,
Dordrecht
,
1993
).
4.
C.
Hagen
, “
Scale and conformal transformations in Galilean-covariant field theory
,”
Phys. Rev. D
5
,
377
(
1972
).
5.
R.
Jackiw
, “
Introducing scale symmetry
,”
Phys. Today
25
(
1
),
23
27
(
1972
).
6.
H.
Kastrup
, “
Gauge properties of the Galilei space
,”
Nucl. Phys. B
7
,
545
558
(
1968
).
7.
U.
Niederer
, “
The maximal kinematical invariance group of the free Schrödinger equation
,”
Helv. Phys. Acta
45
,
802
810
(
1972
).
8.
L.
Ovsiannikov
,
Group Analysis of Differential Equations
(
New York-London
,
1982
).
9.
C.
Roger
and
J.
Unterberger
, “
The Schrödinger–Virasoro Lie group and algebra: Representation theory and cohomological study
,”
Ann. Henri Poincaré
7
(
7–8
),
1477
1529
(
2006
).
10.
J.
Unterberger
and
C.
Roger
, “
The Schrödinger–Virasoro algebra: Mathematical structure and dynamical Schrödinger symmetries
,” in
Theoretical and Mathematical Physics
(
Springer
,
Heidelberg
,
2012
).
11.
P.
Havas
and
J.
Plebański
, “
Conformal extensions of the Galilei group and their relation to the Schrödinger group
,”
J. Math. Phys.
19
(
2
),
482
488
(
1978
).
12.
H.
Chen
,
Y.
Hong
, and
Y.
Su
, “
A family of new simple modules over the Schrödinger–Virasoro algebra
,”
J. Pure Appl. Algebra
222
(
4
),
900
913
(
2018
).
13.
Q.
Chen
and
Y.
Yao
, “
Simple restricted modules for the universal central extension of the planar Galilean conformal algebra
,”
J. Algebra
634
,
698
721
(
2023
).
14.
D.
Gao
and
Y.
Gao
, “
Representations of the planar Galilean conformal algebra
,”
Commun. Math. Phys.
391
(
1
),
199
221
(
2022
).
15.
G.
Liu
,
Y.
Li
, and
K.
Wang
, “
Irreducible weight modules over the Schrödinger Lie algebra in (n + 1) dimensional space-time
,”
J. Algebra
575
,
1
13
(
2021
).
16.
R.
,
V.
Mazorchuk
, and
K.
Zhao
, “
On simple modules over conformal Galilei algebras
,”
J. Pure Appl. Algebra
218
(
10
),
1885
1899
(
2014
).
17.
V.
Bavula
and
T.
Lu
, “
The prime spectrum and simple modules over the quantum spatial ageing algebra
,”
Algebras Represent. Theory
19
(
5
),
1109
1133
(
2016
).
18.
M.
Henkel
and
S.
Stoimenov
, “
On non-local representations of the ageing algebra
,”
Nucl. Phys. B
847
(
3
),
612
627
(
2011
).
19.
R.
,
V.
Mazorchuk
, and
K.
Zhao
, “
Classification of simple weight modules over the 1-spatial ageing algebra
,”
Algebras Represent. Theory
18
(
2
),
381
395
(
2015
).
20.
S.
Stoimenov
and
M.
Henkel
, “
Non-local representations of the ageing algebra in higher dimensions
,”
J. Phys. A: Math. Theor.
46
(
24
),
245004
(
2013
).
21.
V.
Bekkert
,
G.
Benkart
,
V.
Futorny
, and
I.
Kashuba
, “
New irreducible modules for Heisenberg and affine Lie algebras
,”
J. Algebra
373
,
284
298
(
2013
).
22.
V.
Futorny
, “
Imaginary Verma modules for affine Lie algebras
,”
Can. Math. Bull.
37
(
2
),
213
218
(
1994
).
23.
V.
Futorny
, “
Verma type modules of level zero for affine Lie algebras
,”
Trans. Am. Math. Soc.
349
(
7
),
2663
2685
(
1997
).
24.
M.
Gorelik
and
V.
Kac
, “
On simplicity of vacuum modules
,”
Adv. Math.
211
(
2
),
621
677
(
2007
).
25.
H.
Jakobsen
and
V.
Kac
, “
A new class of unitarizable highest weight representations of infinite dimensional Lie algebras
,” in
Lecture Notes in Phys.
(
Springer
,
Berlin
,
1985
), Vol.
226
, pp.
1
20
.
26.
H.
Jakobsen
and
V.
Kac
, “
A new class of unitarizable highest weight representations of infinite-dimensional Lie algebras, II
,”
J. Funct. Anal.
82
(
1
),
69
90
(
1989
).
27.
I. B.
Frenkel
and
Y. C.
Zhu
, “
Vertex operator algebras associated to representations of affine and Virasoro algebras
,”
Duke Math. J.
66
(
1
),
123
168
(
1992
).
28.
H.
Li
, “
Local systems of vertex operators, vertex superalgebras and modules
,”
J. Pure Appl. Algebra
109
(
2
),
143
195
(
1996
).
29.
V.
Mazorchuk
and
K.
Zhao
, “
Simple Virasoro modules which are locally finite over a positive part
,”
Sel. Math.
20
(
3
),
839
854
(
2014
).
30.
H.
Chen
,
X.
Dai
, and
Y.
Hong
, “
The Heisenberg–Virasoro Lie conformal superalgebra
,”
J. Geom. Phys.
178
,
104560
(
2022
).
31.
H.
Chen
and
X.
Guo
, “
New simple modules for the Heisenberg–Virasoro algebra
,”
J. Algebra
390
,
77
86
(
2013
).
32.
H.
Guo
and
H.
Li
, “
Restricted modules and associated vertex algebras of extended Heisenberg–Virasoro algebra
,”
J. Algebra
635
,
463
485
(
2023
).
33.
H.
Guo
and
C.
Xu
, “
Restricted modules for gap-p Virasoro algebra and twisted modules for certain vertex algebras
,”
J. Pure Appl. Algebra
227
(
7
),
107322
(
2023
).
34.
D.
Liu
,
Y.
Pei
,
L.
Xia
, and
K.
Zhao
, “
Irreducible modules over the mirror Heisenberg–Virasoro algebra
,”
Commun. Contemp. Math.
24
(
04
),
2150026
(
2022
).
35.
J.
Li
and
J.
Sun
, “
Representations of the BMS-Kac-Moody algebra
,”
J. Geom. Phys.
191
,
104915
(
2023
).
36.
C.
Weibel
,
An Introduction to Homological Algebra
(
Cambridge University Press
,
Cambridge
,
1994
).
37.
P.
Batra
and
V.
Mazorchuk
, “
Blocks and modules for Whittaker pairs
,”
J. Pure Appl. Algebra
215
(
7
),
1552
1568
(
2011
).
You do not currently have access to this content.