In this paper, we introduce a family of functors denoted as Fb, which act on algebraic D-modules and produce modules over N = 2 superconformal algebras. We demonstrate that these functors preserve irreducibility for all values of b, except for explicitly outlined cases. Moreover, we establish the necessary and sufficient conditions for determining the natural isomorphism between two such functors. Our constructed functors recover specific irreducible modules over N = 2 superconformal algebras, including intermediate series and U(h)-free modules. Additionally, we show that our constructed functors yield several new irreducible modules for N = 2 superconformal algebras.

1.
Adamović
,
D.
, “
Representations of the N = 2 superconformal vertex algebra
,”
Int. Math. Res. Not.
1999
,
61
79
.
2.
Block
,
R.
, “
The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra and of the Weyl algebra
,”
Adv. Math.
39
,
69
110
(
1981
).
3.
Chen
,
H.
,
Dai
,
X.
, and
Liu
,
M.
, “
A family of simple non-weight modules over the twisted N = 2 superconformal algebra
,”
J. Pure Appl. Algebra
226
,
107030
(
2022
).
4.
Chen
,
H.
,
Dai
,
X.
,
Liu
,
D.
, and
Pei
,
Y.
, “
Irreducible modules for super-Virasoro algebras from algebraic D-modules
,”
J. Pure Appl. Algebra
228
,
107512
(
2024
).
5.
Cai
,
Y.
,
Chen
,
H.
,
Guo
,
X.
,
Ma
,
Y.
, and
Zhu
,
M.
, “
A class of non-weight modules of (sl2) and Clebsch–Gordan type formulas
,”
Forum Math.
33
,
743
755
(
2021
).
6.
Cai
,
Y.
,
Liu
,
D.
, and
,
R.
, “
Classification of simple Harish–Chandra modules over the N = 1 Ramond algebra
,”
J. Algebra
567
,
114
127
(
2021
).
7.
Cai
,
Y.
and
,
R.
, “
Classification of simple Harish–Chandra modules over the Neveu–Schwarz algebra and its contact subalgebra
,”
J. Pure. Appl. Algebra
226
,
106866
(
2022
).
8.
Cheng
,
S.
and
Wang
,
W.
, “
Lie subalgebras of differential operators on the super circle
,”
Publ. Res. Inst. Math. Sci.
39
,
545
600
(
2003
).
9.
Dobrev
,
V. K.
, “
Characters of the unitarizable highest weight modules over the N = 2 superconformal algebras
,”
Phys. Lett. B
186
,
43
51
(
1987
).
10.
Dijkgraaf
,
R.
,
Verlinde
,
H.
, and
Verlinde
,
E.
, “
Topological strings in d < 1
,”
Nucl. Phys. B
352
,
59
86
(
1991
).
11.
Fu
,
J.
,
Jiang
,
Q.
, and
Su
,
Y.
, “
Classification of modules of the intermediate series over Ramond N = 2 superconformal algebras
,”
J. Math. Phys.
48
,
043508
(
2007
).
12.
Feigin
,
B. L.
,
Semikhatov
,
A. M.
, and
Tipunin
,
I. Y.
, “
Equivalence between chain categories of representations of affine sl(2) and N = 2 superconformal algebras
,”
J. Math. Phys.
39
,
3865
3905
(
1998
).
13.
Feigin
,
B. L.
,
Semikhatov
,
A. M.
,
Sirota
,
V. A.
, and
Tipunin
,
I. Y.
, “
Resolutions and characters of irreducible representations of the N = 2 superconformal algebra
,”
Nucl. Phys. B
536
,
617
656
(
1998
).
14.
Iohara
,
K.
and
Koga
,
Y.
, “
Representation theory of Neveu–Schwarz and remond algebras I: Verma modules
,”
Adv. Math.
177
,
61
69
(
2003
).
15.
Iohara
,
K.
and
Koga
,
Y.
, “
Representation theory of Neveu–Schwarz and Ramond algebras II: Fock modules
,”
An. Inst. Fourier
53
,
1755
1818
(
2003
).
16.
Iohara
,
K.
and
Koga
,
Y.
, “
Representation theory of N = 2 super Virasoro algebra: Twisted sector
,”
J. Funct. Anal.
214
,
450
518
(
2004
).
17.
Iohara
,
K.
, “
Modules de plus haut poids unitarisables sur la super-algèbre de Virasoro N = 2 tordue
,”
An. Inst. Fourier
58
,
733
754
(
2008
).
18.
Iohara
,
K.
, “
Unitarizable highest weight modules of the N = 2 super Virasoro algebras: Untwisted sectors
,”
Lett. Math. Phys.
91
,
289
305
(
2010
).
19.
Kazama
,
Y.
and
Suzuki
,
H.
, “
New N = 2 superconformal field theories and superstring compactification
,”
Nucl. Phys. B
321
,
232
268
(
1989
).
20.
Kac
,
V. G.
,
Wakimoto
,
M.
, and
Mos
,
T.
, “
Representations of superconformal algebras and mock theta functions
,”
Trans. Moscow Math. Soc.
78
,
9
74
(
2017
).
21.
Liu
,
D.
,
Pei
,
Y.
, and
Xia
,
L.
, “
Classification of simple modules with finite-dimensional weight spaces for the N = 2 Ramond algebra
,”
Sci. Sin. Math.
53
(
9
),
1181
1194
(
2023
).
22.
Liu
,
D.
,
Pei
,
Y.
, and
Xia
,
L.
, “
Whittaker modules for the super-Virasoro algebras
,”
J. Algebra Appl.
18
,
1950211
(
2019
).
23.
Liu
,
D.
,
Pei
,
Y.
, and
Xia
,
L.
, “
Simple restricted modules for Neveu–Schwarz algebra
,”
J. Algebra
546
,
341
356
(
2020
).
24.
Li
,
J.
,
Su
,
Y.
, and
Zhu
,
L.
, “
Classification of indecomposable modules of the intermediate series over the twisted N = 2 superconformal algebra
,”
J. Math. Phys.
51
,
083513
(
2010
).
25.
,
R.
,
Guo
,
X.
, and
Zhao
,
K.
, “
Irreducible modules over the Virasoro algebra
,”
Doc. Math.
16
,
709
721
(
2011
).
26.
,
R.
and
Zhao
,
K.
, “
Irreducible Virasoro modules from irreducible Weyl modules
,”
J. Algebra
414
,
271
287
(
2014
).
27.
,
R.
and
Zhao
,
K.
, “
A family of simple weight modules over the Virasoro algebra
,”
J. Algebra
479
,
437
460
(
2017
).
28.
Nillson
,
J.
, “
Simple (V)-modules which are free over an abelian subalgebra
,”
Forum Math.
35
,
1237
1255
(
2023
).
29.
Sato
,
R.
, “
Modular invariant representations of the superconformal algebra
,”
Int. Math. Res. Not.
2019
,
7659
7690
.
30.
Su
,
Y.
, “
Classification of Harish-Chandra modules over the super-Virasoro algebras
,”
Commun. Algebra
23
,
3653
3675
(
1995
).
31.
Schwimmer
,
A.
and
Seiberg
,
N.
, “
Comments on the N = 2, 3, 4 superconformal algebras in two dimensions
,”
Phys. Lett. B
184
,
191
196
(
1987
).
32.
Semikhatov
,
A. M.
and
Tipunin
,
I. Y.
, “
The structure of Verma modules over the N = 2 superconformal algebra
,”
Commun. Math. Phys.
195
,
129
173
(
1998
).
33.
Xie
,
Q.
and
Sun
,
J.
, “
Non-weight modules over N = 1 Lie superalgebras of block type
,”
Forum Mathe
35
,
1279
(
2023
).
34.
Xue
,
Y.
and
,
R.
, “
Simple weight modules with finite-dimensional weight spaces over Witt superalgebras
,”
J. Algebra
574
,
92
116
(
2021
).
35.
Yang
,
H.
,
Yao
,
Y.
, and
Xia
,
L.
, “
A family of non-weight modules over the super-Virasoro algebras
,”
J. Algebra
547
,
538
555
(
2020
).
36.
Yang
,
H.
,
Yao
,
Y.
, and
Xia
,
L.
, “
On non-weight representations of the N = 2 superconformal algebras
,”
J. Pure Appl. Algebra
225
,
106529
(
2021
).
You do not currently have access to this content.