In this paper, we are concerned with a Kirchhoff-Choquard type equation with L2-prescribed mass. Under different cases of the potential, we prove the existence of normalized ground state solutions to this equation. To obtain the boundedness from below of the energy functional and the compactness of the minimizing sequence, we apply the Gagliardo-Nirenberg inequality with the Riesz potential and the relationship between the different minimal energies corresponding to different mass. We also extend the results to the fractional Kirchhoff-Choquard type equation.

1.
Adams
,
R. A.
and
Fournier
,
J. J. F.
,
Sobolev Spaces
(
Elsevier
,
2003
).
2.
Alves
,
C. O.
and
Ji
,
C.
, “
Normalized solutions for the Schrödinger equations with L2-subcritical growth and different types of potentials
,”
J. Geom. Anal.
32
,
165
(
2022
).
3.
Ao
,
Y.
,
Zhao
,
X.
, and
Zou
,
W.
, “
Normalized solutions for nonlinear Choquard equations with general nonlocal term
,”
J. Fixed Point Theory Appl.
25
,
17
(
2023
).
4.
Bartsch
,
T.
and
Qiang Wang
,
Z.
, “
Existence and multiplicity results for some superlinear elliptic problems on RN
,”
Commun. Partial Differ. Equ.
20
,
1725
1741
(
1995
).
5.
Chen
,
P.
and
Liu
,
X.
, “
Ground states for Kirchhoff equation with Hartree-type nonlinearities
,”
J. Math. Anal. Appl.
473
,
587
608
(
2019
).
6.
Cingolani
,
S.
,
Gallo
,
M.
, and
Tanaka
,
K.
, “
Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities
,”
Calculus Var. Partial Differ. Equ.
61
,
68
(
2022
).
7.
d’Avenia
,
P.
,
Siciliano
,
G.
, and
Squassina
,
M.
, “
On fractional Choquard equation
,”
Math. Models Method Appl. Sci.
258
,
1447
1476
(
2015
).
8.
Gilbarg
,
D.
and
Trudinger
,
N. S.
,
Elliptic Partial Differential Equations of Second Order
(
Springer
,
Berlin
,
1977
), Vol.
224
, p.
2
.
9.
Hardy
,
G. H.
,
Littlewood
,
J. E.
, and
Pólya
,
G.
,
Inequalities
(
Cambridge University Press
,
1952
).
10.
He
,
Q.
,
Lv
,
Z.
, and
Tang
,
Z.
, “
The existence of normalized solutions to the Kirchhoff equation with potential and Sobolev critical nonlinearities
,”
J. Geom. Anal.
33
,
236
(
2023
).
11.
Hu
,
T.
and
Tang
,
C.
, “
Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations
,”
Calculus Var. Partial Differ. Equ.
60
,
210
(
2021
).
12.
Li
,
G.
and
Ye
,
H.
, “
On the concentration phenomenon of L2-subcritical constrained minimizers for a class of Kirchhoff equations with potentials
,”
J. Differ. Equ.
266
,
7101
7123
(
2019
).
13.
Lieb
,
E. H.
, “
Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation
,”
Stud. Appl. Math.
57
,
93
105
(
1977
).
14.
Liu
,
Z.
, “
Multiple normalized solutions for Choquard equations involving Kirchhoff type perturbation
,”
Topol. Methods Nonlinear Anal.
54
,
297
319
(
2019
).
15.
,
D.
, “
A note on Kirchhoff-type equations with Hartree-type nonlinearities
,”
Nonlinear Anal.
99
,
35
48
(
2014
).
16.
Kirchhoff
,
G.
,
Vorlesungen über mathematische Physik. I. Mechanik
(
Teubner
,
Leipzig
,
1876
).
17.
Moroz
,
V.
and
Van Schaftingen
,
J.
, “
Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics
,”
J. Funct. Anal.
265
,
153
184
(
2013
).
18.
Moroz
,
V.
and
Van Schaftingen
,
J.
, “
A guide to the Choquard equation
,”
J. Fixed Point Theory Appl.
19
,
773
813
(
2017
).
19.
Pekar
,
S.
,
Untersuchung über die Elektronentherorie der Kristalle
(
Akademie Verlag
,
Berlin
,
1954
).
20.
Weinstein
,
M. I.
, “
Nonlinear Schrödinger equations and sharp interpolation estimates
,”
Commun. Math. Phys.
87
,
567
576
(
1983
).
21.
Willem
,
M.
,
Minimax Theorems
(
Birckhäuser
,
Boston
,
1996
).
22.
Xia
,
J.
and
Zhang
,
X.
, “
Normalized saddle solutions for a mass supercritical Choquard equation
,”
J. Differ. Equ.
364
,
471
497
(
2023
).
You do not currently have access to this content.