A 2006 conjecture of Antunes and Freitas is addressed connecting the scaling-invariant polygonal isoperimetric and principal frequency deficits for triangles. This yields a quantitative polygonal Faber–Krahn inequality for triangles with an explicit constant. Furthermore, a problem mentioned in the 1951 book “Isoperimetric Inequalities In Mathematical Physics” by Pólya and Szegö is addressed: a formula is given for the principal frequency of a triangle. Moreover, a space of polygons is constructed for the classical Pólya and Szegö problem: in 1947, Pólya proved that if n = 3, 4 the regular polygon Pn minimizes the principal frequency of an n-gon with given area α > 0 and suggested that the same holds when n ≥ 5. In 1951, Pólya and Szegö discussed the possibility of counterexamples. This paper constructs explicit (2n − 4)–dimensional polygonal manifolds M(n,α) and proves the existence of a computable N ≥ 5 such that for all nN, the admissible n-gons are given via M(n,α)and there exists an explicit set An(α)M(n,α) such that Pn has the smallest principal frequency among n-gons in An(α). Inter-alia when n ≥ 3, a formula is proved for the principal frequency of a convex PM(n,α)in terms of an equilateral n-gon with the same area; and, the set of equilateral polygons is proved to be an (n − 3)–dimensional submanifold of the (2n − 4)–dimensional manifold M(n,α)near Pn. The techniques involve a partial symmetrization, tensor calculus, the spectral theory of circulant matrices, and W2,p/BMO estimates. Last, an application is given in the context of electron bubbles.

1.
The Article was received Dec. 20, 1947 and published in 1948.
2.
G.
Pólya
, “
Torsional rigidity, principal frequency, electrostatic capacity and symmetrization
,”
Quart. Appl. Math.
6
,
267
277
(
1948
).
3.
P.
Antunes
and
P.
Freitas
, “
New bounds for the principal Dirichlet eigenvalue of planar regions
,”
Exp. Math.
15
,
333
342
(
2006
).
4.
B.
Siudeja
, “
Sharp bounds for eigenvalues of triangles
,”
Michigan Math. J.
55
,
243
254
(
2007
).
5.
B.
Siudeja
, “
Isoperimetric inequalities for eigenvalues of triangles
,”
Indiana Univ. Math. J.
59
,
1097
1120
(
2010
).
6.
L.
Brasco
,
G.
De Philippis
, and
B.
Velichkov
, “
Faber–Krahn inequalities in sharp quantitative form
,”
Duke Math. J.
164
,
1777
1831
(
2015
).
7.
N.
Fusco
,
F.
Maggi
, and
A.
Pratelli
, “
The sharp quantitative isoperimetric inequality
,”
Ann. Math.
168
(
3
),
941
980
(
2008
).
8.
A.
Figalli
,
F.
Maggi
, and
A.
Pratelli
, “
A mass transportation approach to quantitative isoperimetric inequalities
,”
Invent. Math
182
,
167
211
(
2010
).
9.
E.
Indrei
and
L.
Nurbekyan
, “
On the stability of the polygonal isoperimetric inequality
,”
Adv. Math.
276
,
62
86
(
2015
).
10.
C.
Gordon
,
D.
Webb
, and
S.
Wolpert
, “
Isospectral plane domains and surfaces via Riemannian orbifolds
,”
Invent. Math
110
,
1
22
(
1992
).
11.
J.
Milnor
, “
Eigenvalues of the Laplace operator on certain manifolds
,”
Proc. Natl. Acad. Sci. U. S. A.
51
,
542
(
1964
).
12.
G.
Pólya
and
G.
Szegö
,
Isoperimetric Inequalities in Mathematical Physics
,
Annals of Mathematical Studies
(
Princeton University Press
,
1951
), Vol.
27
.
13.
P.
Freitas
, “
Precise bounds and asymptotics for the first dirichlet eigenvalue of triangles and rhombi
,”
J. Funct. Anal.
251
,
376
398
(
2007
).
14.
A. Y.
Solynin
and
V. A.
Zalgaller
, “
An isoperimetric inequality for logarithmic capacity of polygons
,”
Ann. Math.
159
(
1
),
277
303
(
2004
).
15.
A.
Henrot
, “
Extremum problems for eigenvalues of elliptic operators
,”
Frontiers in Mathematics
(
Birkhäuser Verlag
,
Basel
,
2006
), pp.
x+202
.
16.
B.
Bogosel
and
D.
Bucur
, “
On the polygonal Faber–Krahn inequality
,”
J. Ec. Polytech. Math.
(in press) (
2024
).
17.
J.
Hadamard
,
Lecons sur la propagation des ondes et les equations de l’hydrodynamique
(
Hermann
,
Paris
,
1903
).
18.
M.
Grinfeld
,
Thermodynamic Methods in the Theory of Heterogeneous Systems
(
Longman
,
New York
,
1991
).
19.
P.
Grinfeld
, “
Boundary Perturbation of the Laplace Eigenvalues and applications to electron bubbles and polygons
,” Ph. D. thesis, Massachusetts Institute of Technology, Department of Mathematics,
2003
.
20.
P.
Grinfeld
,
Introduction to Tensor Analysis and the Calculus of Moving Surfaces
(
Springer
,
2013
).
21.
P.
Grinfeld
, “
A better calculus of moving surfaces
,”
J. Geom. Symmetry Phys.
26
,
61
(
2012
).
22.
A.
Laurain
, “
Distributed and boundary expressions of first and second order shape derivatives in non smooth domains
,”
J. Math. Pures Appl.
134
(
9
),
328
(
2020
).
23.
L.
Rayleigh
,
The Theory of Sound
, 2nd ed. (
London
,
1894
), pp.
1894
1896
.
24.
L.
Landau
and
E.
Lifshitz
,
Statistical Physics
(
Nauka
,
New York
,
1964
).
25.
P.
Grinfeld
and
H.
Kojima
,
Phys. Rev. Lett.
91
,
105301
(
2003
).
26.
P.
Grinfeld
, “
Shape optimization and electron bubbles
,”
Numerical Funct. Anal. Opt.
30
,
689
(
2009
).
27.
P.
Grinfeld
, “
Hadamard’s formula inside and out
,”
J Optim Theory Appl
146
,
654
(
2010
).
28.
E.
Indrei
, “
A sharp lower bound on the polygonal isoperimetric deficit
,”
Proc. Amer. Math. Soc.
144
,
3115
3122
(
2015
).
29.
M.
Caroccia
and
F.
Maggi
, “
A sharp quantitative version of Hales’ isoperimetric honeycomb theorem
,”
J. Math. Pures Appl.
106
(
5
),
935
956
(
2016
).
30.
D.
Gilbarg
and
N. S.
Trudinger
,
Elliptic Partial Differential Equations of Second Order
(
Springer
,
2001
).
31.
J.
Andersson
,
E.
Lindgren
, and
H.
Shahgholian
, “
Optimal regularity for the no-sign obstacle problem
,”
Comm. Pure Appl. Math.
66
,
245
262
(
2013
).
32.
E.
Krahn
, “
Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises
,”
Math. Ann.
94
,
97
100
(
1925
).
33.
G.
Faber
, “
Beweis, dass unter allen homogenen membranen von gleicher fläche und gleicher spannung die kreisförmige den tiefsten grundton gibt
,”
Sitzungsberichte der Bayerischen Akademie der Wissenschaften
(
Bavarian Academy of Sciences and Humanities
,
1923
), pp.
228
249
You do not currently have access to this content.