In this paper, we focus on the global well-posedness of solutions to three-dimensional incompressible Boussinesq equations with temperature-dependent viscosity under the smallness assumption of initial velocity fields u0 in the critical space Ḃ3,10. The key ingredients here lie in the decomposition of the velocity fields and the regularity theory of the Stokes system, which are crucial to get rid of the smallness restricition of the initial temperature θ0. In addition, we mention that the improved decay estimates in time is also necessary.

1.
J.
Boussinesq
, “
Theory of waves and vortices propagating along a horizontal rectanglar channel, communicating to the liquid in the channel generally similar velocities of the bottom surface
,”
J. Math. Pures Appl.
17
(
2
),
55
108
(
1872
).
2.
J. R.
Cannon
and
E.
DiBenedetto
, “
The initial value problem for the Boussinesq equations with data in Lp
,”
Lect. Notes Math.
771
(
2
),
129
144
(
1980
).
3.
D.
Chae
, “
Global regularity for the 2D Boussinesq equations with partial viscosity terms
,”
Adv. Math.
203
(
2
),
497
513
(
2006
).
4.
T.
Y Hou
and
C.
Li
, “
Global well-posedness of the viscous Boussinesq equations
,”
Discrete Contin. Dyn. Syst. A
12
(
1
),
1
12
(
2005
).
5.
H.
Abidi
and
T.
Hmidi
, “
On the global well-posedness for Boussinesq system
,”
J. Differential Equations
233
(
1
),
199
220
(
2007
).
6.
R.
Danchin
and
M.
Paicu
, “
Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux
,”
Bull. Soc. Math. Fr.
136
(
2
),
261
309
(
2008
).
7.
H.
Abidi
and
P.
Zhang
, “
On the global well-posedness of 2-D Boussinesq system with variable viscosity
,”
Adv. Math.
305
,
1202
1249
(
2017
).
8.
T.
Hmidi
,
S.
Keraani
, and
F.
Rousset
, “
Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation
,”
J. Differential Equations
249
,
2147
2174
(
2010
).
9.
T.
Hmidi
,
S.
Keraani
, and
F.
Rousset
, “
Global well-posedness for Euler-Boussinesq system with critical dissipation
,”
Commun. Partial Differential Equations
36
,
420
445
(
2010
).
10.
Z.
Ye
, “
An alternative approach to global regularity for the 2D Euler-Boussinesq equations with critical dissipation
,”
Nonlinear Anal.
190
,
111591
(
2020
).
11.
Y.
Yu
,
X.
Wu
, and
Y.
Tang
, “
Global well-posedness for the 2D Boussinesq system with variable viscosity and damping
,”
Math. Methods Appl. Sci.
41
(
8
),
3044
3061
(
2018
).
12.
H.
Abidi
, “
Uniqueness for the Boussinesq system with nonlinear diffusion
,”
J. Math. Pures Appl.
91
(
1
),
80
99
(
2009
).
13.
H.
Abidi
and
P.
Zhang
, “
On the global well-posedness of 3-D Boussinesq system with variable viscosity
,”
Chin. Ann. Math., Ser. B
40
,
643
688
(
2019
).
14.
D.
Li
and
X.
Xu
, “
Global wellposedness of an inviscid 2D Boussinesq system with nonlinear thermal diffusivity
,”
Dyn. Partial Differential Equations
10
(
3
),
255
265
(
2013
).
15.
S.
Lorca
and
J.
Boldrini
, “
The initial value problem for a generalized Boussinesq model: Regularity and global existence of strong solutions
,”
Mate. Contemp.
11
,
71
94
(
1996
).
16.
C.
Wang
and
Z.
Zhang
, “
Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity
,”
Adv. Math.
228
,
43
62
(
2011
).
17.
H.
Abidi
,
G. L.
Gui
, and
P.
Zhang
, “
Well-posedness of 3-D inhomogeneous Navier–Stokes equations with highly oscillatory initial velocity field
,”
J. Math. Pures Appl.
100
,
166
203
(
2013
).
18.
H.
Bahouri
,
J. Y.
Chemin
, and
R.
Danchin
, “
Fourier analysis and nonlinear partial differential equations
,” in
Grundlehren der Mathematischen Wissenschaften
(
Springer-Verlag
,
Berlin, Heidelberg
,
2011
), Vol.
343
.
19.
R.
Danchin
, “
Density-dependent incompressible viscous fluids in critical spaces
,”
Proc. R. Soc. Edinburgh, Sect. A: Math.
133
,
1311
1334
(
2003
).
20.
D. J.
Niu
and
L.
Wang
, “
On the global well-posedness of 3D inhomogeneous incompressible Navier-Stokes system with density-dependent viscosity
,” arXiv:2401.09850 (
2023
).
You do not currently have access to this content.