Hardy type theorem with the Heisenberg–Pauli–Weyl inequality and the logarithmic uncertainty principle for the quaternion Heisenberg group are established.

1.
S.
Thangavelu
,
An Introduction to the Uncertainty Principle Hardy’s Theorem on Lie Groups
,
Prog. Math.
(
Birkhauser
,
Boston
,
2003
), Vol.
217
.
2.
R.
Atef
, “
Uncertainty inequalities on Laguerre hypergroup
,”
Mediterr. J. Math.
10
,
333
351
(
2013
).
3.
J.
Xiao
and
J.
He
, “
Uncertainty inequalities for the Heisenberg group
,”
Proc. Math. Sci.
122
(
4
),
573
581
(
2012
).
4.
M.
Faress
and
S.
Fahlaoui
, “
Spherical Fourier transform on the quaternionic Heisenberg group
,”
Integr. Transforms Spec. Funct.
31
,
685
701
(
2020
).
5.
Q.
Yang
and
F.
Zhu
, “
The heat kernel on H-type groups
,”
Proc. Am. Math. Soc.
136
(
04
),
1457
1464
(
2007
).
6.
L.
Chen
and
J.
Zhao
, “
Weyl transform and generalized spectrogram associated with quaternion Heisenberg group
,”
Bull. Sci. Math.
136
(
2
),
127
143
(
2012
).
7.
L.
Peng
and
J.
Zhao
, “
Weyl transforms associated with the Heisenberg group
,”
Bull. Sci. Math.
132
(
1
),
78
86
(
2008
).
8.
N.
Song
and
J.
Zhao
, “
Strichartz estimates on the quaternion Heisenberg group
,”
Bull. Sci. Math.
138
(
2
),
293
315
(
2014
).
9.
I.
Gradshteyn
and
I.
Ryzhik
, in
Table of Integrals, Series, and Products
, 7th ed. (
Academic Press
,
2007
).
10.
E. M.
Stein
,
Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals
(
Princeton University Press
,
Princeton
,
1993
).
11.
H.
Bateman
,
Higher Transcendental Functions
(
McGraw-Hill Book Co., Inc.
,
New York
,
1953
), Vol.
2
.
12.
G.
Szego
,
Orthogonal Polynomials
(
Amer. Math. Society, Colloq. Publ.
,
Providence, RI
,
1967
).
13.
N. M.
Temme
,
Special Functions: An Introduction to the Classical Functions of Mathematical Physics
(
John Wiley and Sons, Inc.
,
New York
,
1996
).
14.
W.
Beckner
, “
Pitt's inequality and the uncertainty principle
,”
Proc. Amer. Math. Soc.
123
,
1897
1905
(
1995
).
You do not currently have access to this content.