In the present study, the phenomena of concentration and cavitation in the Riemann solution for the non-homogeneous hyperbolic system with logarithmic equation of state and magnetic field is analyzed. Firstly, we introduced new state variable for the velocity to modify the non-conservative system into conservative system and solved the Riemann problem for modified system constructively. Further, the Riemann solutions for the transport equations is investigated as pressure and magnetic field vanish. It is proved that the Riemann solution for the non-homogeneous hyperbolic system with logarithmic equation of state and magnetic field having two shock waves converges to the delta shock wave solution of the transport equations as pressure and magnetic field vanish. It is also proved that the Riemann solution for the non-homogeneous hyperbolic system with logarithmic equation of state and magnetic field having two rarefaction waves converges to the contact discontinuity solution of the transport equations as pressure and magnetic field vanish.

1.
Al Mamon
,
A.
and
Saha
,
S.
, “
The logotropic dark fluid: Observational and thermodynamic constraints
,”
Int. J. Mod. Phys. D
29
,
2050097
(
2020
).
2.
Anton
,
H.
and
Schmidt
,
P.
, “
Theoretical investigations of the elastic constants in laves phases
,”
Intermetallics
5
,
449
465
(
1997
).
3.
Benkhaldoun
,
F.
and
Quivy
,
L.
, “
A non homogeneous Riemann solver for shallow water and two phase flows
,”
Flow, Turbul. Combust.
76
,
391
402
(
2006
).
4et al..
Boshkayev
,
K.
,
D’Agostino
,
R.
, and
Luongo
,
O.
, “
Extended logotropic fluids as unified dark energy models
,”
Eur. Phys. J. C
79
,
332
(
2019
).
5.
Bressan
,
A.
,
Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem
(
Oxford University Press on Demand
,
2000
), Vol.
20
.
6et al..
Capozziello
,
S.
,
D’Agostino
,
R.
, and
Luongo
,
O.
, “
Kinematic model-independent reconstruction of Palatini f(R) cosmology
,”
Gen. Relativ. Gravitation
51
,
2
(
2019
).
7et al..
Chaturvedi
,
R. K.
,
Gupta
,
P.
, and
Singh
,
L.
, “
Solution of generalized Riemann problem for hyperbolic p-system with damping
,”
Int. J. Non-Linear Mech.
117
,
103229
(
2019
).
8.
Chaturvedi
,
R. K.
and
Singh
,
L.
, “
Riemann solutions to the logotropic system with a Coulomb-type friction
,”
R. Mate.
71
,
401
414
(
2020
).
9.
Chaturvedi
,
R. K.
and
Singh
,
L.
, “
The phenomena of concentration and cavitation in the Riemann solution for the isentropic zero-pressure dusty gasdynamics
,”
J. Math. Phys.
62
,
033101
(
2021
).
10et al..
Chaturvedi
,
R. K.
,
Singh
,
L.
, and
Zeidan
,
D.
, “
Delta shock wave solution of the Riemann problem for the non-homogeneous modified Chaplygin gasdynamics
,”
J. Dyn. Differ. Equations
34
,
1067
1084
(
2020
).
11.
Chaudhary
,
J.
and
Singh
,
L.
, “
Riemann problem and elementary wave interactions in dusty gas
,”
Appl. Math. Comput.
342
,
147
165
(
2019
).
12.
Chavanis
,
P.-H.
, “
Is the universe logotropic?
,”
Eur. Phys. J. Plus
130
,
130
(
2015
).
13.
Chavanis
,
P.-H.
, “
The logotropic dark fluid as a unification of dark matter and dark energy
,”
Phys. Lett. B
758
,
59
66
(
2016
).
14.
Chavanis
,
P.-H.
and
Kumar
,
S.
, “
Comparison between the logotropic and ΛCDM models at the cosmological scale
,”
J. Cosmol. Astropart. Phys.
2017
,
018
.
15.
Chavanis
,
P.-H.
and
Sire
,
C.
, “
Logotropic distributions
,”
Physica A
375
,
140
158
(
2007
).
16.
Chen
,
G.-Q.
and
Liu
,
H.
, “
Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids
,”
SIAM J. Math. Anal.
34
,
925
938
(
2003
).
17.
Chen
,
G.-Q.
and
Liu
,
H.
, “
Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids
,”
Physica D
189
,
141
165
(
2004
).
18.
Daw
,
D. A. E.
and
Nedeljkov
,
M.
, “
Shadow waves for pressureless gas balance laws
,”
Appl. Math. Lett.
57
,
54
59
(
2016
).
19.
Faccanoni
,
G.
and
Mangeney
,
A.
, “
Exact solution for granular flows
,”
Int. J. Numer. Anal. Methods Geomech.
37
,
1408
1433
(
2013
).
20.
Ferreira
,
V.
and
Avelino
,
P.
, “
New limit on logotropic unified dark energy models
,”
Phys. Lett. B
770
,
213
216
(
2017
).
21.
Giacomazzo
,
B.
and
Rezzolla
,
L.
, “
The exact solution of the Riemann problem in relativistic magnetohydrodynamics
,”
J. Fluid Mech.
562
,
223
259
(
2006
).
22et al..
Guo
,
L.
,
Li
,
T.
, and
Yin
,
G.
, “
The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term
,”
Commun. Pure Appl. Anal.
16
,
295
(
2017
).
23.
Hu
,
Y.
and
Sheng
,
W.
, “
The Riemann problem of conservation laws in magnetogasdynamics
,”
Commun. Pure Appl. Anal.
12
,
755
(
2013
).
24.
Huang
,
F.
, “
Weak solution to pressureless type system
,”
Commun. Partial Differ. Equations
30
,
283
304
(
2005
).
25.
Lax
,
P. D.
, “
Hyperbolic systems of conservation laws II
,”
Commun. Pure Appl. Math.
10
,
537
566
(
1957
).
26.
Li
,
J.
, “
Note on the compressible Euler equations with zero temperature
,”
Appl. Math. Lett.
14
,
519
523
(
2001
).
27.
Liu
,
T.-P.
, “
Linear and nonlinear large-time behavior of solutions of general systems of hyperbolic conservation laws
,”
Commun. Pure Appl. Math.
30
,
767
796
(
1977
).
28.
Liu
,
T.-P.
and
Smoller
,
J. A.
, “
On the vacuum state for the isentropic gas dynamics equations
,”
Adv. Appl. Math.
1
,
345
(
1980
).
29.
Liu
,
Y.
and
Sun
,
W.
, “
Riemann problem and wave interactions in magnetogasdynamics
,”
J. Math. Anal. Appl.
397
,
454
466
(
2013
).
30.
McLaughlin
,
D. E.
and
Pudritz
,
R. E.
, “
A Model for the Internal Structure of Molecular Cloud Cores
,”
Astrophys. J.
469
,
194
(
1996
).
31.
McLaughlin
,
D. E.
and
Pudritz
,
R. E.
, “
Gravitational collapse and star formation in logotropic and nonisothermal spheres
,”
Astrophys. J.
476
,
750
(
1997
).
32.
Nilsson
,
B.
and
Shelkovich
,
V.
, “
Mass, momentum and energy conservation laws in zero-pressure gas dynamics and delta-shocks
,”
Appl. Anal.
90
,
1677
1689
(
2011
).
33et al..
Odintsov
,
S. D.
,
Oikonomou
,
V.
,
Timoshkin
,
A.
,
Saridakis
,
E. N.
, and
Myrzakulov
,
R.
, “
Cosmological fluids with logarithmic equation of state
,”
Ann. Phys.
398
,
238
253
(
2018
).
34et al..
Reimann
,
S.
,
Borgoo
,
A.
,
Tellgren
,
E. I.
,
Teale
,
A. M.
, and
Helgaker
,
T.
, “
Magnetic-field density-functional theory (BDFT): Lessons from the adiabatic connection
,”
J. Chem. Theory Comput.
13
,
4089
4100
(
2017
).
35.
Sen
,
A.
and
Raja Sekhar
,
T.
, “
The limiting behavior of the Riemann solution to the isentropic Euler system for logarithmic equation of state with a source term
,”
Math. Methods Appl. Sci.
44
,
7207
7227
(
2021
).
36.
Shandarin
,
S. F.
and
Zeldovich
,
Y. B.
, “
The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium
,”
Rev. Mod. Phys.
61
,
185
(
1989
).
37.
Shao
,
Z.
, “
Delta shocks and vacuum states for the isentropic magnetogasdynamics equations for Chaplygin gas as pressure and magnetic field vanish
,” arXiv:1503.08382 (
2015
).
38.
Shen
,
C.
, “
The limits of Riemann solutions to the isentropic magnetogasdynamics
,”
Appl. Math. Lett.
24
,
1124
1129
(
2011
).
39.
Shen
,
C.
, “
The Riemann problem for the pressureless Euler system with the Coulomb-like friction term
,”
IMA J. Appl. Math.
81
,
76
99
(
2016
).
40.
Sheng
,
W.
and
Zhang
,
T.
,
The Riemann Problem for the Transportation Equations in Gas Dynamics
(
American Mathematical Society
,
1999
), Vol.
654
.
41.
Singh
,
R.
and
Singh
,
L.
, “
Solution of the Riemann problem in magnetogasdynamics
,”
Int. J. Non-Linear Mech.
67
,
326
330
(
2014
).
42.
Smoller
,
J.
,
Shock Waves and Reaction—Diffusion Equations
(
Springer Science & Business Media
,
2012
), Vol.
258
.
43.
Suárez
,
A.
and
Chavanis
,
P.-H.
, “
Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction
,”
Phys. Rev. D
95
,
063515
(
2017
).
44.
Sun
,
M.
, “
The exact Riemann solutions to the generalized Chaplygin gas equations with friction
,”
Commun. Nonlinear Sci. Numer. Simul.
36
,
342
353
(
2016
).
45.
Sun
,
M.
, “
Concentration and cavitation phenomena of Riemann solutions for the isentropic Euler system with the logarithmic equation of state
,”
Nonlinear Anal.: Real World Appl.
53
,
103068
(
2020
).
46.
Sun
,
M.
, “
The intrinsic phenomena of cavitation and concentration in Riemann solutions for the isentropic two-phase model with the logarithmic equation of state
,”
J. Math. Phys.
62
,
101502
(
2021
).
47.
Wang
,
G.
, “
The Riemann problem for one dimensional generalized Chaplygin gas dynamics
,”
J. Math. Anal. Appl.
403
,
434
450
(
2013
).
48et al..
Weinan
,
E.
,
Rykov
,
Y. G.
, and
Sinai
,
Y. G.
, “
Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics
,”
Commun. Math. Phys.
177
,
349
380
(
1996
).
49.
Yang
,
H.
and
Wang
,
J.
, “
Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas
,”
J. Math. Anal. Appl.
413
,
800
820
(
2014
).
50.
Zhang
,
Y.
and
Pang
,
Y.
, “
Concentration and cavitation in the vanishing pressure limit of solutions to a simplified isentropic relativistic Euler equations
,”
J. Math. Fluid Mech.
23
,
8
(
2021
).
You do not currently have access to this content.