We consider vector spin glass models with self-overlap correction. Since the limit of free energy is an infimum, we use arguments analogous to those for generic models to show the following: (1) the averaged self-overlap converges; (2) the self-overlap concentrates; (3) the infimum optimizes over paths whose right endpoints are the limit of self-overlap. Lastly, using these, we directly verify the equivalence between the variational formula obtained in Chen [Electron. J. Probab. 28, 1 (2023)] and Panchenko’s generalized Parisi formula in Panchenko [Ann. Probab. 46(2), 865 (2018)].

1.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
2012
).
2.
D.
Panchenko
, “
Free energy in the mixed p-spin models with vector spins
,”
Ann. Probab.
46
(
2
),
865
896
(
2018
).
3.
H.-B.
Chen
, “
Self-overlap correction simplifies the Parisi formula for vector spins
,”
Electron. J. Probab.
28
,
1
20
(
2023
).
4.
H.-B.
Chen
and
J.-C.
Mourrat
, “
On the free energy of vector spin glasses with non-convex interactions
,” arXiv:2311.08980 (
2023
).
5.
J.-C.
Mourrat
, “
Nonconvex interactions in mean-field spin glasses
,”
Probab. Math. Phys.
2
,
281
339
(
2021
).
6.
J.-C.
Mourrat
, “
Free energy upper bound for mean-field vector spin glasses
,”
Ann. Inst. Henri Poincaré Probab. Stat.
59
(
3
),
1143
1182
(
2023
).
7.
H.-B.
Chen
and
J.
Xia
, “
Hamilton–Jacobi equations from mean-field spin glasses
,” arXiv:2201.12732 (
2022
).
8.
H.-B.
Chen
and
J.
Xia
, “
Hamilton–Jacobi equations with monotone nonlinearities on convex cones
,” arXiv:2206.12537 (
2022
).
9.
J.-C.
Mourrat
, “
The Parisi formula is a Hamilton–Jacobi equation in Wasserstein space
,”
Can. J. Math.
74
,
607
629
(
2022
).
10.
D.
Panchenko
,
The Sherrington–Kirkpatrick Model
,
Springer Monographs in Mathematics
(
Springer
,
New York
,
2013
).
11.
T.
Dominguez
and
J.-C.
Mourrat
, “
Statistical mechanics of mean-field disordered systems: A Hamilton–Jacobi approach
,” arXiv:2311.08976 (
2023
).
12.
E.
Bates
and
Y.
Sohn
, “
Parisi formula for balanced Potts spin glass
,” arXiv:2310.06745 (
2023
).
13.
J.-C.
Mourrat
and
D.
Panchenko
, “
Extending the Parisi formula along a Hamilton–Jacobi equation
,”
Electron. J. Probab.
25
,
17
(
2020
).
14.
G.
Parisi
, “
Infinite number of order parameters for spin-glasses
,”
Phys. Rev. Lett.
43
(
23
),
1754
(
1979
).
15.
G.
Parisi
, “
A sequence of approximated solutions to the S-K model for spin glasses
,”
J. Phys. A: Math. Gen.
13
(
4
),
L115
L121
(
1980
).
16.
F.
Guerra
, “
Broken replica symmetry bounds in the mean field spin glass model
,”
Commun. Math. Phys.
233
(
1
),
1
12
(
2003
).
17.
M.
Talagrand
, “
The Parisi formula
,”
Ann. Math.
163
(
1
),
221
263
(
2006
).
18.
D.
Panchenko
, “
Free energy in the generalized Sherrington–Kirkpatrick mean field model
,”
Rev. Math. Phys.
17
(
07
),
793
857
(
2005
).
19.
D.
Panchenko
, “
The Parisi formula for mixed p-spin models
,”
Ann. Probab.
42
(
3
),
946
958
(
2014
).
20.
D.
Panchenko
, “
The free energy in a multi-species Sherrington–Kirkpatrick model
,”
Ann. Probab.
43
(
6
),
3494
3513
(
2015
).
21.
D.
Panchenko
, “
Free energy in the Potts spin glass
,”
Ann. Probab.
46
(
2
),
829
864
(
2018
).
22.
M.
Talagrand
, “
Free energy of the spherical mean field model
,”
Probab. Theory Relat. Fields
134
(
3
),
339
382
(
2006
).
23.
W.-K.
Chen
, “
The Aizenman–Sims–Starr scheme and Parisi formula for mixed p-spin spherical models
,”
Electron. J. Probab.
18
,
1
14
(
2013
).
24.
E.
Bates
and
Y.
Sohn
, “
Free energy in multi-species mixed p-spin spherical models
,”
Electron. J. Probab.
27
,
1
75
(
2022
).
25.
D.
Panchenko
, “
The Ghirlanda–Guerra identities for mixed p-spin model
,”
C. R. Math.
348
(
3–4
),
189
192
(
2010
).
26.
S.
Chatterjee
, “
The Ghirlanda–Guerra identities without averaging
,” arXiv:0911.4520 (
2009
).
27.
S.
Ghirlanda
and
F.
Guerra
, “
General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity
,”
J. Phys. A: Math. Gen.
31
(
46
),
9149
(
1998
).
28.
M.
Talagrand
, “
Construction of pure states in mean field models for spin glasses
,”
Probab. Theory Relat. Fields
148
,
601
(
2010
).
29.
R. T.
Rockafellar
,
Convex Analysis
(
Princeton University Press
,
1970
), Vol.
36
.
30.
R. T.
Powers
and
E.
Størmer
, “
Free states of the canonical anticommutation relations
,”
Commun. Math. Phys.
16
(
1
),
1
33
(
1970
).
31.
P.-L.
Lions
and
J.-C.
Rochet
, “
Hopf formula and multitime Hamilton–Jacobi equations
,”
Proc. Am. Math. Soc.
96
(
1
),
79
84
(
1986
).
You do not currently have access to this content.