We decompose the Lie algebra e8(24) into representations of e7(25)sl(2,R) using our recent description of e8 in terms of (generalized) 3 × 3 matrices over pairs of division algebras. Freudenthal’s description of both e7 and its minimal representation are therefore realized explicitly within e8, with the action given by the (generalized) matrix commutator in e8, and with a natural parameterization using division algebras. Along the way, we show how to implement standard operations on the Albert algebra such as trace of the Jordan product, the Freudenthal product, and the determinant, all using commutators in e8.

1.
H.
Freudenthal
, “
Lie groups in the foundations of geometry
,”
Adv. Math.
1
,
145
190
(
1964
).
2.
J.
Tits
, “
Algèbres Alternatives, Algèbres de Jordan et algèbres de Lie Exceptionnelles
,”
Indag. Math. (Proc.)
28
,
223
237
(
1966
).
3.
A.
Sudbery
, “
Division algebras, (pseudo)orthogonal groups and spinors
,”
J. Phys. A: Math. Gen.
17
,
939
955
(
1984
).
4.
C. H.
Barton
and
A.
Sudbery
, “
Magic squares and matrix models of Lie algebras
,”
Adv. Math.
180
,
596
647
(
2003
).
5.
C. A.
Manogue
and
J.
Schray
, “
Finite Lorentz transformations, automorphisms, and division algebras
,”
J. Math. Phys.
34
,
3746
3767
(
1993
).
6.
T.
Dray
and
C. A.
Manogue
, “
Octonionic Cayley spinors and E6
,”
Comment. Math. Univ. Carol.
51
,
193
207
(
2010
); available at https://dml.cz/handle/10338.dmlcz/140099.
7.
C. A.
Manogue
and
T.
Dray
, “
Octonions, E6, and particle physics
,”
J. Phys.: Conf. Ser.
254
,
012005
(
2010
).
8.
A.
Wangberg
, “
The structure of E6
,” Ph.D. thesis,
Oregon State University
,
2007
; http://ir.library.oregonstate.edu/xmlui/handle/1957/7446.
9.
A.
Wangberg
and
T.
Dray
.
Discovering real Lie subalgebras of e6 using Cartan decompositions
.
J. Math. Phys.
54
,
081703
(
2013
).
10.
A.
Wangberg
and
T.
Dray
, “
E6, the group: The structure of SL(3,O)
,”
J. Algebra Appl.
14
,
1550091
(
2015
).
11.
T.
Dray
,
C. A.
Manogue
, and
R. A.
Wilson
, “
A symplectic representation of E7
,”
Comment. Math. Univ. Carol.
55
,
387
399
(
2014
); available at https://dml.cz/handle/10338.dmlcz/143814.
12.
J.
James Kincaid
, “
Division algebra representations of SO(4, 2)
,” Master’s thesis,
Oregon State University
,
2012
; http://ir.library.oregonstate.edu/xmlui/handle/1957/30682.
13.
J.
Kincaid
and
T.
Dray
, “
Division algebra representations of SO(4, 2)
,”
Mod. Phys. Lett. A
29
,
1450128
(
2014
).
14.
T.
Dray
,
J.
Huerta
, and
J.
Kincaid
, “
The magic square of Lie groups: The 2 × 2 case
,”
Lett. Math. Phys.
104
,
1445
1468
(
2014
).
15.
R. A.
Wilson
,
T.
Dray
, and
C. A.
Manogue
, “
An octonionic construction of E8 and the Lie algebra magic square
,”
Innov. Incidence Geom.
20
,
611
634
(
2023
).
16.
C. A.
Manogue
,
T.
Dray
, and
R. A.
Wilson
, “
Octions: An E8 description of the Standard Model
,”
J. Math. Phys.
63
,
081703
(
2022
) [Amer. Math. Soc. Transl. 213, 241–242 (2005)].
17.
P.
Truini
, “
Exceptional Lie algebras, SU(3) and Jordan pairs
,”
Pac. J. Math.
260
,
227
243
(
2012
).
18.
A.
Marrani
and
P.
Truini
, “
Exceptional Lie algebras, SU(3) and Jordan pairs. Part 2: Zorn-type representations
,”
J. Phys. A: Math. Theor.
47
,
265202
(
2014
).
19.
E. B.
Vinberg
, “
A construction of exceptional Lie groups (Russian)
,”
Tr. Semin. Vektorn. Tensorn.
13
,
7
9
(
1966
) [Amer. Math. Soc. Transl. 213, 241–242 (2005)].
20.
T.
Dray
,
C. A.
Manogue
, and
R. A.
Wilson
, “
A new division algebra representation of E6
,”
J. Math. Phys.
65
(
3
),
031702
(2024).
21.
H.
Freudenthal
, “
Beziehungen der E7 und E8 zur Oktavenebene, I
,”
Proc. Kon. Ned. Akad. Wet.
A57
,
218
230
(
1954
).
22.
M.
Günaydin
and
F.
Gürsey
, “
Quark statistics and octonions
,”
Phys. Rev. D
9
,
3387
3391
(
1974
).
23.
F.
Gürsey
,
P.
Ramond
, and
P.
Sikivie
, “
A universal gauge theory model based on E6
,”
Phys. Lett. B
60
,
177
180
(
1976
).
24.
I.
Bars
and
M.
Günaydin
, “
Grand unification with the exceptional group E8
,”
Phys. Rev. Lett.
45
,
859
862
(
1980
).
25.
A.
Garrett Lisi
, “
An exceptionally simple theory of everything
,” arXiv:0711.0770 (
2007
).
26.
D.
Chester
,
A.
Marrani
, and
M.
Rios
, “
Beyond the standard model with six-dimensional spinors
,”
Particles
6
,
144
172
(
2023
).
27.
I.
Bars
and
M.
Günaydin
, “
Construction of Lie algebras and Lie superalgebras from ternary algebras
,”
J. Math. Phys.
20
,
1977
1993
(
1979
).
28.
M.
Günaydin
, “
Vertex operator construction of nonassociative algebras and their affinizations
,”
J. Math. Phys.
30
,
937
942
(
1989
).
29.
I. L.
Kantor
, “
Some generalizations of Jordan algebras
,”
Trudy Sem. Vektor. Tenzor. Anal.
16
,
407
499
(
1972
) (in Russian).
30.
I. L.
Kantor
, “
Models of exceptional Lie algebras
,”
Sov. Math. Dokl.
14
,
254
258
(
1973
).
31.
N.
Günaydin
and
S. J.
Hyun
, “
Affine exceptional Jordan algebra and vertex operators
,”
Phys. Lett. B
209
,
498
502
(
1988
).
32.
T.
Dray
and
C. A.
Manogue
, “
The exceptional Jordan eigenvalue problem
,”
Int. J. Theor. Phys.
38
,
2901
2916
(
1999
).
You do not currently have access to this content.