In this paper, we consider the convergence rates for the 2D stationary and non-stationary Navier–Stokes Equations over highly oscillating periodic bumpy John domains with C2 regularity in some neighborhood of the boundary point (0,0). For the stationary case, using the variational equation satisfied by the solution and the correctors for the bumpy John domains obtained by Higaki and Zhuge [Arch. Ration. Mech. Anal. 247(4), 66 (2023)] after correcting the values on the inflow/outflow boundaries ({0} ∪ {1}) × (0, 1), we can obtain an O(ɛ3/2) approximation in L2 for the velocity and an O(ɛ3/2) convergence rates in L2 approximated by the so called Navier’s wall laws, which generalized the results obtained by Jäger and Mikelić [J. Differ. Equations 170(1), 96–122 (2001)]. Moreover, for the non-stationary case, using the energy method, we can obtain an O(ɛ3/2 + exp(−Ct)) convergence rate for the velocity in Lx2.

1.
Achdou
,
Y.
and
Pironneau
,
O.
, “
Domain decomposition and wall laws
,”
C. R. Acad. Sci. - Ser. I
320
(
5
),
541
547
(
1995
).
2.
Achdou
,
Y.
,
Pironneau
,
O.
, and
Valentin
,
F.
, “
Effective boundary conditions for laminar flows over periodic rough boundaries
,”
J. Comput. Phys.
147
(
1
),
187
218
(
1998
).
3.
Achdou
,
Y.
,
Pironneau
,
O.
, and
Valentin
,
F.
, “
Shape control versus boundary control
,” in
Équations aux Dérivées Partielles et Applications
(
Gauthier-Villars, Éd. Sci. Méd. Elsevier
,
Paris
,
1998
), pp.
1
18
.
4.
Barrenechea
,
G. R.
,
Le Tallec
,
P.
, and
Valentin
,
F.
, “
New wall laws for the unsteady incompressible Navier-Stokes equations on rough domains
,”
ESAIM: Math. Modell. Numer. Anal.
36
(
2
),
177
203
(
2002
).
5.
Basson
,
A.
and
Gérard-Varet
,
D.
, “
Wall laws for fluid flows at a boundary with random roughness
,”
Commun. Pure Appl. Math.
61
(
7
),
941
987
(
2008
).
6.
Conca
,
C.
, “
Étude d’un fluide traversant une paroi perforée. I. Comportement limite près de la paroi
,”
J. Math. Pures Appl.
66
(
1
),
1
43
(
1987
).
7.
Conca
,
C.
, “
Étude d’un fluide traversant une paroi perforée. II. Comportement limite loin de la paroi
,”
J. Math. Pures Appl.
66
(
1
),
45
70
(
1987
).
8.
Deolmi
,
G.
,
Dahmen
,
W.
, and
Müller
,
S.
, “
Effective boundary conditions for compressible flows over rough boundaries
,”
Math. Models Methods Appl. Sci.
25
(
07
),
1257
1297
(
2015
).
9.
Deolmi
,
G.
,
Dahmen
,
W.
, and
Müller
,
S.
, “
Effective boundary conditions: A general strategy and application to compressible flows over rough boundaries
,”
Commun. Comput. Phys.
21
(
2
),
358
400
(
2017
).
10.
Ern
,
A.
and
Guermond
,
J.
,
Finite Elements I: Approximation and Interpolation
,
Texts in Applied Mathematics Vol. 72
(
Springer
,
Cham
,
2021
).
11.
Gérard-Varet
,
D.
, “
The Navier wall law at a boundary with random roughness
,”
Commun. Math. Phys.
286
(
1
),
81
110
(
2009
).
12.
Higaki
,
M.
and
Prange
,
C.
, “
Regularity for the stationary Navier–Stokes equations over bumpy boundaries and a local wall law
,”
Calculus Var. Partial Differ. Equations
59
(
4
),
131
(
2020
).
13.
Higaki
,
M.
,
Prange
,
C.
, and
Zhuge
,
J.
, “
Large-scale regularity for the stationary Navier-Stokes equations over non-Lipschitz boundaries
,”
Anal. PDE
17
(
1
),
171
242
(
2024
).
14.
Higaki
,
M.
and
Zhuge
,
J.
, “
Higher-order boundary layers and regularity for Stokes systems over rough boundaries
,”
Arch. Ration. Mech. Anal.
247
(
4
),
66
(
2023
).
15.
Jäger
,
W.
and
Mikelić
,
A.
, “
On the roughness-induced effective boundary conditions for an incompressible viscous flow
,”
J. Differ. Equations
170
(
1
),
96
122
(
2001
).
16.
Jäger
,
W.
and
Mikelić
,
A.
, “
Couette flows over a rough boundary and drag reduction
,”
Commun. Math. Phys.
232
(
3
),
429
455
(
2003
).
17.
John
,
F.
, “
Rotation and strain
,”
Commun. Pure Appl. Math.
14
,
391
413
(
1961
).
18.
Kenig
,
C.
and
Prange
,
C.
, “
Uniform Lipschitz estimates in bumpy half-spaces
,”
Arch. Ration. Mech. Anal.
216
(
3
),
703
765
(
2015
).
19.
Kenig
,
C.
and
Prange
,
C.
, “
Improved regularity in bumpy Lipschitz domains
,”
J. Math. Pures Appl.
113
,
1
36
(
2018
).
20.
Madureira
,
A. L.
and
Valentin
,
F.
, “
Asymptotics of the Poisson problem in domains with curved rough boundaries
,”
SIAM J. Math. Anal.
38
(
5
),
1450
1473
(
2007
).
21.
Martio
,
O.
and
Sarvas
,
J.
, “
Injectivity theorems in plane and space
,”
Ann. Fenn. Math.
4
(
2
),
383
401
(
1979
).
22.
Mohammadi
,
B.
,
Pironneau
,
O.
, and
Valentin
,
F.
, “
Rough boundaries and wall laws
,”
Int. J. Numer. Methods Fluids
27
,
169
177
(
1998
).
23.
Navier
,
C.
, “
Sur les lois de léquilibre et du mouvement des corps élastiques
,”
Mem. Acad. R. Sci. Inst. France
6
(
369
) (
1827
).
24.
Tartar
,
L.
,
An Introduction to Sobolev Spaces and Interpolation Spaces
,
Lecture Notes of the Unione Matematica Italiana Vol. 3
(
Springer; UMI
,
Berlin; Bologna
,
2007
).
25.
Zhuge
,
J.
, “
Regularity theory of elliptic systems in ɛ-scale flat domains
,”
Adv. Math.
379
,
107566
(
2021
).
You do not currently have access to this content.