This paper examines the large time behavior of solutions to the 3D Hall-magnetohydrodynamic equations with horizontal dissipation. As preparations we establish the global well-posedness of solutions and their global explicitly uniform upper bounds for Hk (k ≥ 1) to this system with initial data small in H2. Furthermore, if the initial data also belongs to homogeneous negative Besov spaces, we prove the optimal decay rates of the aforementioned global solutions and their higher order derivatives.

1.
Acheritogaray
,
M.
,
Degond
,
P.
,
Frouvelle
,
A.
, and
Liu
,
J.-G.
, “
Kinetic formulation and global existence for the Hall-magneto-hydrodynamics system
,”
Kinet. Relat. Models
4
,
901
918
(
2011
).
2.
Bahouri
,
H.
,
Chemin
,
J.-Y.
, and
Danchin
,
R.
,
Fourier Analysis and Nonlinear Partial Differential Equations
,
Grundlehren der Mathematischen Wissenschaften Vol. 343
(
Springer-Verlag
,
Berlin, Heidelberg
,
2011
).
3.
Chae
,
D.
,
Degond
,
P.
, and
Liu
,
J.
, “
Well-posedness for Hall-magnetohydrodynamics
,”
Ann. Inst. Henri Poincare Anal. Non Linéaire
31
,
555
565
(
2014
).
4.
Chae
,
D.
and
Lee
,
J.
, “
On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics
,”
J. Differ. Equations
256
,
3835
3858
(
2014
).
5.
Chae
,
D.
and
Schonbek
,
M.
, “
On the temporal decay for the Hall-magnetohydrodynamic equations
,”
J. Differ. Equations
255
,
3971
3982
(
2013
).
6.
Chae
,
D.
,
Wan
,
R.
, and
Wu
,
J.
, “
Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion
,”
J. Math. Fluid Mech.
17
,
627
638
(
2015
).
7.
Chae
,
D.
and
Weng
,
S.
, “
Singularity formation for the incompressible Hall-MHD equations without resistivity
,”
Ann. Inst. Henri Poincare, Sect. C, Anal. Non Linéaire
33
,
1009
1022
(
2016
).
8.
Chemin
,
J.
and
Zhang
,
P.
, “
On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations
,”
Commun. Math. Phys.
272
,
529
566
(
2007
).
9.
Dai
,
M.
, “
Local well-posedness for the Hall-MHD system in optimal Sobolev spaces
,”
J. Differ. Equations
289
,
159
181
(
2021
).
10.
Dai
,
M.
and
Liu
,
H.
, “
Long time behavior of solutions to the 3D Hall-magneto-hydrodynamics system with one diffusion
,”
J. Differ. Equations
266
,
7658
7677
(
2019
).
11.
Danchin
,
R.
and
Tan
,
J.
, “
On the well-posedness of the Hall-magnetohydrodynamics system in critical spaces
,”
Commun. Partial Differ. Equations
46
,
31
65
(
2021
).
12.
Fan
,
J.
,
Huang
,
S.
, and
Nakamura
,
G.
, “
Well-posedness for the axisymmetric incompressible viscous Hall-magnetohydrodynamic equations
,”
Appl. Math. Lett.
26
,
963
967
(
2013
).
13.
Fei
,
M.
and
Xiang
,
Z.
, “
On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics with horizontal dissipation
,”
J. Math. Phys.
56
,
051504
(
2015
).
14.
Homann
,
H.
and
Grauer
,
R.
, “
Bifurcation analysis of magnetic reconnection in Hall-MHD-systems
,”
Physica D
208
,
59
72
(
2005
).
15.
Ji
,
R.
,
Wu
,
J.
, and
Yang
,
W.
, “
Stability and optimal decay for the 3D Navier-Stokes equations with horizontal dissipation
,”
J. Differ. Equations
290
,
57
77
(
2021
).
16.
Li
,
J.
,
Yu
,
Y.
, and
Zhu
,
W.
, “
A class large solution of the 3D Hall-magnetohydrodynamic equations
,”
J. Differ. Equations
268
(
10
),
5811
5822
(
2020
).
17.
Liu
,
L.
and
Tan
,
J.
, “
Global well-posedness for the Hall-magnetohydrodynamics system in larger critical Besov spaces
,”
J. Differ. Equations
274
,
382
413
(
2021
).
18.
Miao
,
C.
,
Wu
,
J.
, and
Zhang
,
Z.
,
Littlewood-Paley Theory and its Applications in Partial Differential Equations of Fluid Dynamics
(
Science Press
,
Beijing, China
,
2012
) (in Chinese).
19.
Miao
,
C.
,
Yuan
,
B.
, and
Zhang
,
B.
, “
Well-posedness of the Cauchy problem for the fractional power dissipative equations
,”
Nonlinear Anal.: Theory, Methods Appl.
68
,
461
484
(
2008
).
20.
Paicu
,
M.
, “
Équation anisotrope de Navier-Stokes dans des espaces critiques
,”
Rev. Mat. Iberoam.
21
,
179
235
(
2005
).
21.
Wan
,
R.
and
Zhou
,
Y.
, “
On global existence, energy decay and blow-up criteria for the Hall-MHD system
,”
J. Differ. Equations
259
,
5982
6008
(
2015
).
22.
Wan
,
R.
and
Zhou
,
Y.
, “
Global well-posedness, BKM blow-up criteria and zero h limit for the 3D incompressible Hall-MHD equations
,”
J. Differ. Equations
267
,
3724
3747
(
2019
).
23.
Wan
,
R.
and
Zhou
,
Y.
, “
Global well-posedness for the 3D incompressible Hall-magnetohydrodynamic equations with Fujita–Kato type initial data
,”
J. Math. Fluid Mech.
21
,
5
(
2019
).
24.
Wang
,
F.
and
Wang
,
K.
, “
Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion
,”
Nonlinear Anal.: Real World Appl.
14
,
526
535
(
2013
).
25.
Wardle
,
M.
, “
Star formation and the Hall effect
,”
Astrophys. Space Sci.
292
,
317
323
(
2004
).
26.
Weng
,
S.
, “
On analyticity and temporal decay rates of solutions to the viscous resistive Hall-MHD system
,”
J. Differ. Equations
260
,
6504
6524
(
2016
).
27.
Weng
,
S.
, “
Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations
,”
J. Funct. Anal.
270
,
2168
2187
(
2016
).
28.
Wu
,
J.
and
Zhu
,
Y.
, “
Global solutions of 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion near an equilibrium
,”
Adv. Math.
377
,
107466
(
2021
).
29.
Wu
,
X.
,
Yu
,
Y.
, and
Tang
,
Y.
, “
Well-posedness for the incompressible Hall-MHD equations in low regularity spaces
,”
Mediterr. J. Math.
15
,
48
(
2018
).
30.
Xu
,
L.
and
Zhang
,
P.
, “
Enhanced dissipation for the third component of 3D anisotropic Navier-Stokes equations
,”
J. Differ. Equations
335
,
464
496
(
2022
).
31.
Yang
,
W.
,
Jiu
,
Q.
, and
Wu
,
J.
, “
The 3D incompressible Navier–Stokes equations with partial hyperdissipation
,”
Math. Nachr.
292
,
1823
1836
(
2019
).
32.
Ye
,
Z.
, “
Well-posedness results for the 3D incompressible Hall-MHD equations
,”
J. Differ. Equations
321
,
130
216
(
2022
).
33.
Zhai
,
X.
, “
Global wellposedness and large time behavior of solutions to the Hall-magnetohydrodynamics equations
,”
Z. Anal. Anwend.
39
,
395
419
(
2020
).
34.
Zhang
,
H.
and
Zhao
,
K.
, “
On 3D Hall-MHD equations with fractional Laplacians: Global well-posedness
,”
J. Math. Fluid Mech.
23
,
82
(
2021
).
You do not currently have access to this content.