We generalise well-known integrals of Ingham-Siegel and Fisher-Hartwig type over the unitary group U(N) with respect to Haar measure, for finite N and including fixed external matrices. When depending only on the eigenvalues of the unitary matrix, such integrals can be related to a Toeplitz determinant with jump singularities. After introducing fixed deterministic matrices as external sources, the integrals can no longer be solved using Andréiéf’s integration formula. Resorting to the character expansion as put forward by Balantekin, we derive explicit determinantal formulae containing Kummer’s confluent and Gauß’ hypergeometric function. They depend only on the eigenvalues of the deterministic matrices and are analytic in the parameters of the jump singularities. Furthermore, unitary two-matrix integrals of the same type are proposed and solved in the same manner. When making part of the deterministic matrices random and integrating over them, we obtain similar formulae in terms of Pfaffian determinants. This is reminiscent to a unitary group integral found recently by Kanazawa and Kieburg [J. Phys. A: Math. Theor. 51(34), 345202 (2018)].

1.
D. J.
Gross
and
E.
Witten
,
Phys. Rev. D
21
,
446
453
(
1980
).
2.
3.
J.
Gasser
and
H.
Leutwyler
,
Phys. Lett. B
184
,
83
88
(
1987
).
4.
P.
Deift
,
A.
Its
, and
I.
Krasovsky
,
Commun. Pure Appl. Math.
66
,
1360
1438
(
2013
); arXiv:1207.4990.
5.
C. A.
Tracy
and
H.
Widom
,
Probab. Theory Relat. Fields
119
,
350
380
(
2001
); arXiv:math/9904042.
6.
J. P.
Keating
and
N. C.
Snaith
,
Commun. Math. Phys.
214
,
57
89
(
2000
).
7.
J. G.
Russo
and
M.
Tierz
,
J. High Energy Phys.
2020
,
81
; arXiv:2007.08515.
8.
F. J.
Dyson
,
J. Math. Phys.
3
,
140
156
(
1962
).
9.
C.
Andréiéf
,
Mém. Soc. Sci., Bordeaux
2
,
1
14
(
1886
).
10.
H.
Leutwyler
and
A.
Smilga
,
Phys. Rev. D
46
,
5607
(
1992
).
11.
A. D.
Jackson
and
J. J. M.
Verbaarschot
,
Phys. Rev. D
53
,
7223
7230
(
1996
); arXiv:hep-ph/9509324.
12.
T.
Wettig
,
A.
Schäfer
, and
H. A.
Weidenmüller
,
Phys. Lett. B
367
,
28
34
(
1996
); arXiv:hep-ph/9510258.
14.
Harish-Chandra
,
Am. J. Math.
80
(
2
),
241
310
(
1958
).
15.
C.
Itzykson
and
J. B.
Zuber
,
J. Math. Phys.
21
,
411
421
(
1980
).
16.
F. A.
Berezin
and
F. I.
Karpelevich
,
Dokl. Akad. Nauk SSSR
118
,
9
(
1958
).
17.
B.
Schlittgen
and
T.
Wettig
,
J. Phys. A: Math. Gen.
36
,
3195
3202
(
2003
); arXiv:math-ph/0209030.
18.
A. B.
Balantekin
and
P.
Cassak
,
J. Math. Phys.
43
,
604
620
(
2002
); arXiv:hep-th/0108130.
19.
C.
Lehner
,
T.
Wettig
,
T.
Guhr
, and
Y.
Wei
,
J. Math. Phys.
49
,
063510
(
2008
); arXiv:0801.1226.
21.
Y. V.
Fyodorov
and
B. A.
Khoruzhenko
,
Commun. Math. Phys.
273
,
561
599
(
2007
); arXiv:math-ph/0602032.
22.
Y. V.
Fyodorov
and
B. A.
Khoruzhenko
,
J. Phys. A: Math. Theor.
40
,
669
700
(
2007
); arXiv:math-ph/0610045.
23.
M.
Kieburg
,
A. B. J.
Kuijlaars
, and
D.
Stivigny
,
Int. Math. Res. Not.
2016
,
3392
3424
; arXiv:1501.03910.
24.
P. H.
Damgaard
,
K.
Splittorff
, and
J. J. M.
Verbaarschot
,
Phys. Rev. Lett.
105
,
162002
(
2010
); arXiv:1001.2937.
25.
G.
Akemann
,
P. H.
Damgaard
,
K.
Splittorff
, and
J. J. M.
Verbaarschot
,
Phys. Rev. D
83
,
085014
(
2011
); arXiv:1012.0752.
26.
T.
Kanazawa
and
M.
Kieburg
,
J. Phys. A: Math. Theor.
51
(
34
),
345202
(
2018
); arXiv:1804.03985.
27.
NIST Handbook of Mathematical Functions
, edited by
F. W. J.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
(
Cambridge University Press
,
Cambridge
,
2010
).
28.
A. E.
Ingham
,
Math. Proc. Cambridge Philos. Soc.
29
(
2
),
271
276
(
1933
).
29.
C. L.
Siegel
,
Ann. Math.
36
(
3
),
527
606
(
1935
).
30.
32.
M. R.
Zirnbauer
, in
Proceedings of the XIIth International Congress of Mathematical Physics, Brisbane 13–19 July 1997
, edited by
D.
DeWit
,
A. J.
Braken
,
M. D.
Gould
, and
P. A.
Pearce
(
International Press Inc.
,
Cambridge, MA
,
1999
), pp.
290
297
; arXiv:chao-dyn/9810016.
33.
J. B.
Conrey
,
D. W.
Farmer
, and
M. R.
Zirnbauer
, “
Howe pairs, supersymmetry, and ratios of random characteristic polynomials for the unitary groups U(N)
,” arXiv:math-ph/0511024.
34.
J. B.
Conrey
,
P. J.
Forrester
, and
N. C.
Snaith
,
Int. Math. Res. Not.
7
,
397
431
(
2005
).
35.
H.
Weyl
,
The Classical Groups: Their Invariants and Representations
(
Princeton University Press
,
Princeton, NJ
,
1948
).
36.
M. L.
Mehta
,
Matrix Theory: Selected Topics and Useful Results
(
Editions de Physique
,
Les Ulis
,
1989
).
37.
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
, 10th Printing, edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover Publications
,
New York
,
1972
).
38.

In the same way (2.5) can be obtained from (2.1) by taking the degenerate limit U1N, tj → 1 ∀j, to the identity.

39.
J.
Schur
,
J. Reine Angew. Math.
139
,
155
250
(
1911
).
40.
N. G.
de Bruijn
,
J. Indian Math. Soc.
19
,
133
151
(
1955
).
41.
A.
Böttcher
and
B.
Silbermann
,
J. Funct. Anal.
63
(
2
),
178
214
(
1985
).
You do not currently have access to this content.