Scanning the whole writing, we discuss a stochastic cooperative species system with distributed delays under the influences of Ornstein–Uhlenbeck process of mean regression. We successfully obtain the existence and uniqueness of positive solutions for stochastic system at first. Secondly, by studying the Lyapunov function, we present the existence of the stationary distribution of the system. We are relatively familiar with the understanding of the density function of random systems. This paper also gives the expression of the density function of the random system near the unique positive equilibrium. In addition, the asymptotic properties of the p-moment boundedness and solution of the stochastic population system are also studied. In particular, we use numerical simulation to verify the theoretical results in the last section.

1.
R.
Huang
,
Y. S.
Wang
, and
H.
Wu
, “
Population abundance in predator–prey systems with predator’s dispersal between two patches
,”
Theor. Popul. Biol.
135
,
1
8
(
2020
).
2.
P. S.
Mandal
and
M.
Banerjee
, “
Stochastic persistence and stationary distribution in a Holling–Tanner type prey–predator model
,”
Physica A
391
,
1216
1233
(
2012
).
3.
Q. M.
Zhang
,
D. Q.
Jiang
,
Z. W.
Liu
, and
D.
O’Regan
, “
The long time behavior of a predator–prey model with disease in the prey by stochastic perturbation
,”
Appl. Math. Comput.
245
,
305
320
(
2014
).
4.
C. H.
Zhang
,
X. P.
Yan
, and
G. H.
Cui
, “
Hopf bifurcations in a predator–prey system with a discrete delay and a distributed delay
,”
Nonlinear Anal.: Real World Appl.
11
,
4141
4153
(
2010
).
5.
P.
Gramlich
,
S. J.
Plitzko
,
L.
Rudolf
,
B.
Drossel
, and
T.
Gross
, “
The influence of dispersal on a predator–prey system with two habitats
,”
J. Theor. Biol.
398
,
150
161
(
2016
).
6.
M.
Liu
and
K.
Wang
, “
A note on a delay Lotka–Volterra competitive system with random perturbations
,”
Appl. Math. Lett.
26
,
589
594
(
2013
).
7.
L. D.
Liu
,
X. Z.
Meng
, and
T. H.
Zhang
, “
Optimal control strategy for an impulsive stochastic competition system with time delays and jumps
,”
Physica A
477
,
99
113
(
2017
).
8.
H.
Qiu
and
W. M.
Deng
, “
Optimal harvesting of a stochastic delay competitive Lotka–Volterra model with Lévy jumps
,”
Appl. Math. Comput.
317
,
210
222
(
2018
).
9.
Y.
Nakata
and
Y.
Muroya
, “
Permanence for nonautonomous Lotka–Volterra cooperative systems with delays
,”
Nonlinear Anal.: Real World Appl.
11
,
528
534
(
2010
).
10.
Y.
Yang
,
C. F.
Wu
, and
Z. X.
Li
, “
Forced waves and their asymptotics in a Lotka–Volterra cooperative model under climate change
,”
Appl. Math. Comput.
353
,
254
264
(
2019
).
11.
J. H.
Huang
and
X. F.
Zou
, “
Traveling wavefronts in diffusive and cooperative Lotka–Volterra system with delays
,”
J. Math. Anal. Appl.
271
,
455
466
(
2002
).
12.
Z. Y.
Lu
and
W. D.
Wang
, “
Global stability for two-species Lotka–Volterra systems with delay
,”
J. Math. Anal. Appl.
208
,
277
280
(
1997
).
13.
W. J.
Zuo
,
D. Q.
Jiang
,
X. G.
Sun
,
T.
Hayat
, and
A.
Alsaedi
, “
Long-time behaviors of a stochastic cooperative Lotka–Volterra system with distributed delay
,”
Physica A
506
,
542
559
(
2018
).
14.
C. Y.
Ji
,
D. Q.
Jiang
, and
N. Z.
Shi
, “
Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation
,”
J. Math. Anal. Appl.
359
,
482
498
(
2009
).
15.
X. R.
Mao
,
G.
Marion
, and
E.
Renshaw
, “
Environmental Brownian noise suppresses explosions in population dynamics
,”
Stochastic Process. Appl.
97
,
95
110
(
2002
).
16.
M.
Liu
and
K.
Wang
, “
Stationary distribution, ergodicity and extinction of a stochastic generalized logistic system
,”
Appl. Math. Lett.
25
,
1980
1985
(
2012
).
17.
W. J.
Zuo
and
D. Q.
Jiang
, “
Periodic solutions for a stochastic non-autonomous Holling–Tanner predator–prey system with impulses
,”
Nonlinear Anal.: Hybrid Syst.
22
,
191
201
(
2016
).
18.
D. Q.
Jiang
,
N. Z.
Shi
, and
X. Y.
Li
, “
Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation
,”
J. Math. Anal. Appl.
340
,
588
597
(
2008
).
19.
Q.
Liu
,
D. Q.
Jiang
, and
N. Z.
Shi
, “
Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching
,”
Appl. Math. Comput.
316
,
310
325
(
2018
).
20.
W. J.
Zuo
and
Y. X.
Zhou
, “
Density function and stationary distribution of a stochastic SIR model with distributed delay
,”
Appl. Math. Lett.
129
,
107931
(
2022
).
21.
X. J.
Mu
,
D. Q.
Jiang
,
T.
Hayat
,
A.
Alsaedi
, and
B.
Ahmad
, “
Dynamical behavior of a stochastic Nicholson’s blowflies model with distributed delay and degenerate diffusion
,”
Nonlinear Dyn.
103
,
2081
2096
(
2021
).
22.
S. Q.
Zhang
,
X. Z.
Meng
,
T.
Feng
, and
T. H.
Zhang
, “
Dynamics analysis and numerical simulations of a stochastic non-autonomous predator–prey system with impulsive effects
,”
Nonlinear Anal.: Hybrid Syst.
26
,
19
37
(
2017
).
23.
C. M.
Huang
,
S. Q.
Gan
, and
D. S.
Wang
, “
Delay-dependent stability analysis of numerical methods for stochastic delay differential equations
,”
J. Comput. Appl. Math.
236
,
3514
3527
(
2012
).
24.
D. S.
Li
, “
The stationary distribution and ergodicity of a stochastic generalized logistic system
,”
Stat. Probab. Lett.
83
,
580
583
(
2013
).
25.
Y.
Zhao
,
S. L.
Yuan
, and
J.
Ma
, “
Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment
,”
Bull. Math. Biol.
77
,
1285
1326
(
2015
).
26.
X. F.
Zhang
and
R.
Yuan
, “
A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function
,”
Appl. Math. Comput.
394
,
125833
(
2021
).
27.
W. M.
Wang
,
Y. L.
Cai
,
Z. Q.
Ding
, and
Z. J.
Gui
, “
A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process
,”
Physica A
509
,
921
936
(
2018
).
28.
S.
Gaiffas
and
G.
Matulewicz
, “
Sparse inference of the drift of a high-dimensional Ornstein–Uhlenbeck process
,”
J. Multivar. Anal.
169
,
1
20
(
2019
).
29.
F. K.
Wu
,
X. R.
Mao
, and
K.
Chen
, “
A highly sensitive mean-reverting process in finance and the Euler–Maruyama approximations
,”
J. Math. Anal. Appl.
348
,
540
554
(
2008
).
30.
Y. X.
Zhou
and
D. Q.
Jiang
, “
Dynamical behavior of a stochastic SIQR epidemic model with Ornstein–Uhlenbeck process and standard incidence rate after dimensionality reduction
,”
Commun. Nonlinear Sci. Numer. Simul.
116
,
106878
(
2023
).
31.
Y. L.
Cai
,
J. J.
Jiao
,
Z. J.
Gui
,
Y. T.
Liu
, and
W. M.
Wang
, “
Environmental variability in a stochastic epidemic model
,”
Appl. Math. Comput.
329
,
210
226
(
2018
).
32.
X. J.
Mu
,
D. Q.
Jiang
,
T.
Hayat
,
A.
Alsaedi
, and
Y.
Liao
, “
A stochastic turbidostat model with Ornstein-Uhlenbeck process: Dynamics analysis and numerical simulations
,”
Nonlinear Dyn.
107
,
2805
2817
(
2022
).
33.
B. Q.
Zhou
,
D. Q.
Jiang
, and
T.
Hayat
, “
Analysis of a stochastic population model with mean-reverting Ornstein–Uhlenbeck process and Allee effects
,”
Commun. Nonlinear Sci. Numer. Simul.
111
,
106450
(
2022
).
34.
Q.
Yang
,
X. H.
Zhang
, and
D. Q.
Jiang
, “
Dynamical behaviors of a stochastic food chain system with Ornstein–Uhlenbeck process
,”
J. Nonlinear Sci.
32
,
34
(
2022
).
35.
R. Z.
Khasminskii
,
Stochastic Stability of Differential Equations
(
Springer; Heidelberg Publishing
,
1980
).
36.
B. Q.
Zhou
,
D. Q.
Jiang
,
Y. C.
Dai
, and
T.
Hayat
, “
Threshold dynamics and probability density function of a stochastic avian influenza epidemic model with nonlinear incidence rate and psychological effect
,”
J. Nonlinear Sci.
33
,
29
(
2023
).
37.
D. J.
Higham
, “
An algorithmic introduction to numerical simulation of stochastic differential equations
,”
SIAM Rev.
43
,
525
546
(
2001
).
38.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics
(
Springer
,
Berlin
,
1983
).
39.
X. R.
Mao
,
Stochastic Differential Equations and Applications
(
Horwood Publishing
,
Chichester
,
1997
).
40.
L.
Huaping
and
M.
Zhien
, “
The threshold of survival for system of two species in a polluted environment
,”
J. Math. Biol.
30
,
49
61
(
1991
).
You do not currently have access to this content.