In this paper, we consider a reaction-diffusion cholera model with hyperinfectious vibrios and spatio-temporal delay. In the model, it is assumed that cholera has a fixed latent period and the latent individuals can diffuse, and a non-local term is incorporated to describe the mobility of individuals during the latent period. It is shown that the existence and nonexistence of traveling wave solutions are fully determined by the basic reproduction number R0 and the critical wave speed c*. Firstly, when R0>1 and the wave speed c > c*, the existence of strong traveling waves is obtained by using Schauder’s fixed point theorem and Lyapunov functional approach. By employing a limiting argument, the existence of strong traveling waves is established when R0>1 and c = c*. Next, when R01, the nonexistence of traveling wave solutions is established by contradiction. Besides, when R0>1 and c < c*, the nonexistence of traveling wave solutions is obtained by means of two-sided Laplace transform. This indicates that c* is indeed the minimal wave speed. Numerical simulations are carried out to illustrate the theoretical results.

1.
A.
Pruss Ustun
,
W. H. Organization
et al, Safer water, better health: Costs, benefits and sustainability of interventions to protect and promote health,
World Health Organization
,
2008
.
2.
R.
Koch
, “
An address on cholera and its bacillus
,”
Br. Med. J.
2
,
403
407
(
1884
).
3.
K. T.
Goh
,
S. H.
Teo
,
S.
Lam
, and
M. K.
Ling
, “
Person-to-person transmission of cholera in a psychiatric hospital
,”
J. Infect.
20
,
193
200
(
1990
).
4.
World Health Organization
, “
Cholera vaccines: Who position paper
,”
Wkly. Epidemiol. Rec.
85
,
117
128
(
2010
).
5.
J.
Cui
,
Z.
Wu
, and
X.
Zhou
, “
Mathematical analysis of a cholera model with vaccination
,”
J. Appl. Math.
2014
,
324767
.
6.
C.
Modnak
,
J.
Wang
, and
Z.
Mukandavire
, “
Simulating optimal vaccination times during cholera outbreaks
,”
Int. J. Biomath.
7
,
1450014
(
2014
).
7.
D.
Posny
,
J.
Wang
,
Z.
Mukandavire
, and
C.
Modnak
, “
Analyzing transmission dynamics of cholera with public health interventions
,”
Math. Biosci.
264
,
38
53
(
2015
).
8.
X.
Tian
,
R.
Xu
, and
J.
Lin
, “
Mathematical analysis of a cholera infection model with vaccination strategy
,”
Appl. Math. Comput.
361
,
517
535
(
2019
).
9.
D. S.
Merrell
,
S. M.
Butler
,
F.
Qadri
et al, “
Host-induced epidemic spread of the cholera bacterium
,”
Nature
417
,
642
645
(
2002
).
10.
D. M.
Hartley
,
J. G.
Morris
, Jr.
, and
D. L.
Smith
, “
Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics?
,”
PLoS Med.
3
,
e7
(
2005
).
11.
Z.
Shuai
and
P.
van den Driessche
, “
Global dynamics of cholera models with differential infectivity
,”
Math. Biosci.
234
,
118
126
(
2011
).
12.
Z.
Shuai
,
J. H.
Tien
, and
P.
van den Driessche
, “
Cholera models with hyperinfectivity and temporary immunity
,”
Bull. Math. Biol.
74
,
2423
2445
(
2012
).
13.
F.
Capone
,
V.
De Cataldis
, and
R.
De Luca
, “
Influence of diffusion on the stability of equilibria in a reaction–diffusion system modeling cholera dynamic
,”
J. Math. Biol.
71
,
1107
1131
(
2015
).
14.
X.
Wang
and
J.
Wang
, “
Analysis of cholera epidemics with bacterial growth and spatial movement
,”
J. Biol. Dyn.
9
,
233
261
(
2015
).
15.
L.
Zhang
,
Z.
Wang
, and
Y.
Zhang
, “
Dynamics of a reaction–diffusion waterborne pathogen model with direct and indirect transmission
,”
Comput. Math. Appl.
72
,
202
215
(
2016
).
16.
J.
Wang
and
X.
Wu
, “
Dynamics and profiles of a diffusive cholera model with bacterial hyperinfectivity and distinct dispersal rates
,”
J. Dyn. Differ. Equations
35
,
1205
1241
(
2021
).
17.
H.
Shu
,
Z.
Ma
, and
X.
Wang
, “
Threshold dynamics of a nonlocal and delayed cholera model in a spatially heterogeneous environment
,”
J. Math. Biol.
83
,
41
(
2021
).
18.
Y.
Yang
,
L.
Zou
,
J.
Zhou
, and
C. H.
Hsu
, “
Dynamics of a waterborne pathogen model with spatial heterogeneity and general incidence rate
,”
Nonlinear Anal.: Real World Appl.
53
,
103065
(
2020
).
19.
A. S.
Azman
,
K. E.
Rudolph
,
D. A. T.
Cummings
, and
J.
Lessler
, “
The incubation period of cholera: A systematic review
,”
J. Infect.
66
,
432
438
(
2013
).
20.
O. S.
Sisodiya
,
O.
Misra
, and
J.
Dhar
, “
Dynamics of cholera epidemics with impulsive vaccination and disinfection
,”
Math. Biosci.
298
,
46
57
(
2018
).
21.
R.
Kahn
,
C. M.
Peak
,
J.
Fernández-Gracia
et al, “
Incubation periods impact the spatial predictability of cholera and Ebola outbreaks in Sierra Leone
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
5067
5073
(
2020
).
22.
P.
Van den Driessche
and
J.
Watmough
, “
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
,”
Math. Biosci.
180
,
29
48
(
2002
).
23.
W.
Wang
and
X.
Zhao
, “
Basic reproduction numbers for reaction-diffusion epidemic models
,”
SIAM J. Appl. Dyn. Syst.
11
,
1652
1673
(
2012
).
24.
N.
Bai
,
C.
Song
, and
R.
Xu
, “
Mathematical analysis and application of a cholera transmission model with waning vaccine-induced immunity
,”
Nonlinear Anal.: Real World Appl.
58
,
103232
(
2021
).
25.
T.
Zhang
,
W.
Wang
, and
K.
Wang
, “
Minimal wave speed for a class of non-cooperative diffusion–reaction system
,”
J. Differ. Equations
260
,
2763
2791
(
2016
).
26.
T.
Zhang
, “
Minimal wave speed for a class of non-cooperative reaction–diffusion systems of three equations
,”
J. Differ. Equations
262
,
4724
4770
(
2017
).
27.
S.
Ma
, “
Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem
,”
J. Differ. Equations
171
,
294
314
(
2001
).
28.
X.
Wang
,
H.
Wang
, and
J.
Wu
, “
Traveling waves of diffusive predator-prey systems: Disease outbreak propagation
,”
Discrete Contin. Dyn. Syst.
32
,
3303
(
2012
).
29.
E.
Zeidler
,
Nonlinear Functional Analysis and its Applications: Fixed-point Theorems
(
Springer
,
New York
,
1986
).
30.
D.
Gilbarg
,
N. S.
Trudinger
,
D.
Gilbarg
, and
N.
Trudinger
,
Elliptic Partial Differential Equations of Second Order
(
Springer
,
Berlin
,
2001
).
31.
L.
Zhao
,
Z.
Wang
, and
S.
Ruan
, “
Traveling wave solutions in a two-group SIR epidemic model with constant recruitment
,”
J. Math. Biol.
77
,
1871
1915
(
2018
).
32.
A.
Friedman
,
Partial Differential Equations of Parabolic Type
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1964
).
33.
M. H.
Protter
and
H. F.
Weinberger
,
Maximum Principles in Differential Equations
(
Prentice-Hall
,
Englewood Cliffs
,
1983
).
34.
J.
Li
and
X.
Zou
, “
Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain
,”
Bull. Math. Biol.
71
,
2048
2079
(
2009
).
36.
S.
Ai
,
Y.
Du
,
Y.
Jiao
, and
R.
Peng
, “
Traveling wave solutions of a class of multi-speciesnon-cooperative reaction-diffusion systems
,”
Nonlinearity
36
(
5
),
2371
(
2023
).
You do not currently have access to this content.