We prove a continuation condition in the context of 3 + 1 dimensional vacuum Einstein gravity in Constant Mean extrinsic Curvature (CMC) gauge. More precisely, we obtain quantitative criteria under which the physical spacetime can be extended in the future indefinitely as a solution to the Cauchy problem of the Einstein equations given regular initial data. In particular, we show that a gauge-invariant H2 Sobolev norm of the spacetime Riemann curvature remains bounded in the future time direction provided the so-called deformation tensor of the unit timelike vector field normal to the chosen CMC hypersurfaces verifies a spacetime L bound. To this end, we implement a novel technique to obtain this refined estimate by using Friedlander’s parametrix for tensor wave equations on curved spacetime and Moncrief’s subsequent improvement. We conclude by providing a physical explanation of our result as well as its relation to the issues of determinism and weak cosmic censorship.

1.
Y.
Choquet-Bruhat
,
General Relativity and the Einstein Equations
(
Oxford University Press
,
Oxford
,
2008
).
2.
L.
Andersson
and
V.
Moncrief
, “
Elliptic-hyperbolic systems and the Einstein equations
,”
Ann. Henri Poincaré
4
,
1
34
(
2003
).
3.
M. G.
Grillakis
, “
Regularity and asymptotic behavior of the wave equation with a critical nonlinearity
,”
Ann. Math.
132
,
485
509
(
1990
).
4.
M.
Struwe
, “
Globally regular solutions to the u5 Klein-Gordon equation
,”
Ann. Sc. Norm. Super. Pisa-Cl. Sci.
15
,
495
513
(
1988
).
5.
K.
Jörgens
, “
Das Anfangswertproblem in Grossen für eine Klasse nichtlinearer Wellengleichungen
,”
Math. Z.
77
,
295
308
(
1961
).
6.
J.
Rauch
, “
The u5 Klein-Gordon equation
,” in
Nonlinear Partial Differential Equations and Their Applications
(
Elsevier
,
1981
), Vol.
1
, pp.
335
364
.
7.
D.
Pelinovsky
and
A.
Sakovich
, “
Global well-posedness of the short-pulse and sine–Gordon equations in energy space
,”
Commun. Partial Differ. Equ.
35
,
613
629
(
2010
).
8.
D. M.
Eardley
and
V.
Moncrief
, “
The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space
,”
Commun. Math. Phys.
83
,
171
191
(
1982
).
9.
D. M.
Eardley
and
V.
Moncrief
, “
The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space: II. Completion of proof
,”
Commun. Math. Phys.
83
,
193
212
(
1982
).
10.
P.
Chruściel
and
J.
Shatah
, “
Global existence of solutions of the Yang–Mills equations on globally hyperbolic four dimensional Lorentzian manifolds
,”
Asian J. Math.
1
,
530
548
(
1997
).
11.
S.
Ghanem
, “
The global non-blow-up of the Yang–Mills curvature on curved space-times
,”
J. Hyperbolic Differ. Equ.
13
,
603
631
(
2016
).
12.
J.
Krieger
,
W.
Schlag
, and
D.
Tataru
, “
Renormalization and blow up for charge one equivariant critical wave maps
,”
Invent. Math.
171
,
543
615
(
2008
).
13.
D.
Christodoulou
,
The Formation of Shocks in 3-dimensional Fluids
(
European Mathematical Society
,
2007
), Vol.
2
.
14.
R.
Penrose
, “
The question of cosmic censorship
,”
J. Astrophys. Astron.
20
,
233
248
(
1999
).
15.
D.
Christodoulou
and
S.
Klainerman
, “
The global nonlinear stability of the Minkowski space
,” in
Séminaire Equations Aux Dérivées Partielles (Polytechnique)
(
Numdum
,
1993
), pp.
1
29
.
16.
L.
Bieri
, “
An extension of the stability theorem of the Minkowski space in general relativity
,”
J. Differ. Geom.
86
,
17
70
(
2010
).
17.
N.
Zipser
,
The Global Nonlinear Stability of the Trivial Solution of the Einstein-Maxwell Equations
(
Harvard University
,
2000
).
18.
P. G.
LeFloch
and
Y.
Ma
, “
The Euclidian-hyperboidal foliation method and the nonlinear stability of Minkowski spacetime
,” arXiv:1712.10048 (
2017
).
19.
L.
Bigorgne
,
D.
Fajman
,
J.
Joudioux
,
J.
Smulevici
, and
M.
Thaller
, “
Asymptotic stability of Minkowski space-time with non-compactly supported massless Vlasov matter
,”
Arch. Ration. Mech. Anal.
242
,
1
147
(
2021
).
20.
C.
Liu
and
J.
Wang
, “
A new symmetric hyperbolic formulation and the local Cauchy problem for the Einstein–Yang–Mills system in the temporal gauge
,” arXiv:2111.04540 (
2021
).
21.
C.
Liu
,
T.
Oliynyk
, and
J.
Wang
, “
Global existence and stability of de Sitter-like solutions to the Einstein-Yang-Mills equations in spacetime dimensions n ≥ 4
,” arXiv:2202.05432 (
2022
).
22.
D.
Fajman
and
Z.
Wyatt
, “
Attractors of the Einstein-Klein-Gordon system
,”
Commun. Partial Differ. Equ.
46
,
1
30
(
2021
).
23.
L.
Andersson
and
D.
Fajman
, “
Nonlinear stability of the Milne model with matter
,”
Commun. Math. Phys.
378
,
261
298
(
2020
).
24.
V.
Branding
,
D.
Fajman
, and
K.
Kröncke
, “
Stable cosmological Kaluza-Klein spacetimes
,”
Commun. Math. Phys.
368
,
1087
1120
(
2019
).
25.
P.
Mondal
and
S.-T.
Yau
, “
Radiation estimates of the Minkowski space: Coupled Einstein-Yang-Mills perturbations
,” arXiv:2211.03167 (
2022
).
26.
F. J.
Tipler
, “
On the nature of singularities in general relativity
,”
Phys. Rev. D
15
,
942
(
1977
).
27.
P.
Mondal
, “
On the non-blow up of energy critical nonlinear massless scalar fields in ‘3+1’ dimensional globally hyperbolic spacetimes: Light cone estimates
,”
Ann. Math. Sci. Appl.
6
,
225
306
(
2021
).
28.
M. T.
Anderson
, “
On long-time evolution in general relativity and geometrization of 3-manifolds
,”
Commun. Math. Phys.
222
,
533
567
(
2001
).
29.
B.-L.
Chen
and
P. G.
Lefloch
, “
Local foliations and optimal regularity of Einstein spacetimes
,”
J. Geom. Phys.
59
,
913
941
(
2009
).
30.
S.
Klainerman
and
I.
Rodnianski
, “
On the breakdown criterion in general relativity
,”
J. Am. Math. Soc.
23
,
345
382
(
2009
).
31.
A.
Shao
, “
On breakdown criteria for nonvacuum Einstein equations
,”
Ann. Henri Poincaré
12
,
205
277
(
2011
).
32.
Q.
Wang
, “
Improved breakdown criterion for Einstein vacuum equations in CMC gauge
,”
Commun. Pure Appl. Math.
65
,
21
76
(
2012
).
33.
S.
Klainerman
and
I.
Rodnianski
, “
A Kirchoff–Sobolev parametrix for the wave equation and applications
,”
J. Hyperbolic Differ. Equ.
04
,
401
433
(
2007
).
34.
V.
Moncrief
, “
An integral equation for spacetime curvature in general relativity
,”
Surv. Differ. Geom.
10
,
109
146
(
2005
).
35.
V.
Moncrief
and
P.
Mondal
, “
Could the universe have an exotic topology?
,”
Pure Appl. Math. Q.
15
,
921
966
(
2019
).
36.
B.
Chen
and
P. G.
LeFloch
, “
Injectivity radius of Lorentzian manifolds
,”
Commun. Math. Phys.
278
,
679
713
(
2008
).
37.
P. G.
LeFloch
, “
Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature
,”
Sémin. Théor. Spectrale Géom.
26
,
77
90
(
2008
).
38.
S.
Klainerman
and
I.
Rodnianski
, “
Causal geometry of Einstein-vacuum spacetimes with finite curvature flux
,”
Invent. Math.
159
,
437
529
(
2005
).
39.
S.
Klainerman
and
I.
Rodnianski
, “
On the radius of injectivity of null hypersurfaces
,”
J. Am. Math. Soc.
21
,
775
795
(
2008
).
40.
S.
Klainerman
and
I.
Rodnianski
, “
Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux
,”
GAFA Geom. Funct. Anal.
16
,
164
229
(
2006
).
41.
G. F.
Friedlander
,
The Wave Equation on a Curved Spacetime
(
Cambridge University Press
,
1976
), Vol.
2
.
42.
R.
Schoen
, “
Conformal deformation of a Riemannian metric to constant scalar curvature
,”
J. Differ. Geom.
20
,
479
495
(
1984
).
43.
L.
Andersson
and
V.
Moncrief
, “
Future complete vacuum spacetimes
,” in
The Einstein Equations and the Large Scale Behavior of Gravitational Fields
(
Springer
,
2004
), pp.
299
330
.
44.
H.
Ringström
,
The Cauchy Problem in General Relativity
(
European Mathematical Society
,
2009
), Vol.
6
.
45.
S.
Klainerman
, “
The null condition and global existence to nonlinear wave equations
,”
Lect. Appl. Math.
23
,
111
117
(
1986
).
46.
M. T.
Wang
and
S. T.
Yau
, “
Isometric embeddings into the Minkowski space and new quasi-local mass
,”
Commun. Math. Phys.
288
,
919
942
(
2009
).
47.
D.
Christodoulou
,
The Formation of Black Holes in General Relativity
(
European Mathematical Society
,
2012
).
48.
S. W.
Hawking
and
R.
Penrose
, “
The singularities of gravitational collapse and cosmology
,”
Proc. R. Soc. London, Ser. A
314
(
1519
),
529
548
(
1970
).
49.
G.
W Gibbons
and
S.
W Hawking
,
Euclidean Quantum Gravity
(
World Scientific
,
1993
).
50.
R.
Loll
, “
Quantum gravity from causal dynamical triangulations: A review
,”
Classical Quantum Gravity
37
,
013002
(
2019
).
51.
D.
Grimmer
, “
A discrete analog of general covariance--Part 1: Could the world be fundamentally set on a lattice?
,” arXiv:2204.02276 (
2022
).
52.
P. T.
Chrusciel
,
J.
Isenberg
, and
V.
Moncrief
, “
Strong cosmic censorship in polarised Gowdy spacetimes
,”
Classical Quantum Gravity
7
,
1671
1680
(
1990
).
53.
V.
Moncrief
, “
Global properties of Gowdy spacetimes with T3 × R topology
,”
Ann. Phys.
132
,
87
107
(
1981
).
54.
Y.
Choquet-Bruhat
and
V.
Moncrief
, “
Nonlinear stability of an expanding universe with the S1 isometry group
,” in
Partial Differential Equations and Mathematical Physics
(
Springer
,
2003
), pp.
57
71
.
55.
Y.
Choquet-Bruhat
and
V.
Moncrief
, “
Future global in time Einsteinian spacetimes with U(1) isometry group
,”
Ann. Henri Poincaré
2
,
1007
1064
(
2001
).
You do not currently have access to this content.