Motivated by the quantum hall effect, we study N two dimensional interacting fermions in a large magnetic field limit. We work in a bounded domain, ensuring finite degeneracy of the Landau levels. In our regime, several levels are fully filled and inert: the density in these levels is constant. We derive a limiting mean-field and semi classical description of the physics in the last, partially filled Landau level.

1.
E. H.
Lieb
,
J.-P.
Solovej
, and
J.
Yngvason
, “
Ground states of large quantum dots in magnetic fields
,”
Phys. Rev. B
51
,
10646
(
1995
).
2.
E. H.
Lieb
J.-P.
Solovej
, and
J.
Yngvason
Quantum dots
,” arXiv:cond-mat/9404099 (
1994
).
3.
E. H.
Lieb
,
J.-P.
Solovej
, and
J.
Yngvason
, “
Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band regions
,”
Commun. Pure Appl. Math.
47
,
513
(
1994
).
4.
E. H.
Lieb
,
J.-P.
Solovej
, and
J.
Yngvason
, “
Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions
,”
Commun. Math. Phys.
161
,
77
(
1994
).
5.
E. H.
Lieb
,
J.-P.
Solovej
, and
J.
Yngvason
, “
Heavy atoms in the strong magnetic field of a neutron star
,”
Phys. Rev. Lett.
69
,
749
(
1992
).
6.
S.
Fournais
and
P.
Madsen
, “
Semi-classical limit of confined fermionic systems in homogeneous magnetic fields
,”
Ann. Henri Poincaré
21
,
1401
(
2020
).
7.
S.
Fournais
,
M.
Lewin
, and
J.-P.
Solovej
, “
The semi-classical limit of large fermionic systems
,”
Calculus Var. Partial Differ. Equ.
57
,
105
(
2018
).
8.
J. K.
Jain
,
Composite Fermions
(
Cambridge University Press
,
2009
), ISBN: 9780511607561.
9.
C.
Villani
,
Topics in Optimal Transportation
(
American Mathematical Society
,
2003
).
10.
A. S.
Kechris
,
Classical Descriptive Set Theory
(
Springer
,
1995
).
11.
A.
Aftalion
and
S.
Serfaty
, “
Lowest Landau level approach in superconductivity for the Abrikosov lattice close to Hc2
,”
Sel. Math.
13
,
183
(
2007
).
12.
Y.
Almog
, “
Abrikosov lattices in finite domains
,”
Commun. Math. Phys.
262
,
677
(
2006
).
13.
N.
Rougerie
and
J.
Yngvason
, “
Holomorphic quantum hall states in higher Landau levels
,”
J. Math. Phys.
61
,
041101
(
2020
).
14.
C.
Cheverry
and
N.
Raymond
,
A Guide to Spectral Theory Applications and Exercises
(
Birkhäuser Cham
,
2021
).
15.
K.
Chandrasekharan
,
Elliptic Functions
(
Springer
,
1985
).
16.
E. H.
Lieb
and
J.-P.
Solovej
, “
Quantum coherent operators: A generalization of coherent states
,”
Lett. Math. Phys.
22
,
145
(
1991
).
17.
J.
Yngvason
, “
Thomas–Fermi theory for matter in a magnetic field as a limit of quantum mechanics
,”
Lett. Math. Phys.
22
,
107
(
1991
).
18.
R. L.
Frank
,
M.
Lewin
,
E. H.
Lieb
, and
R.
Seiringer
, “
A positive density analogue of the Lieb–Thirring inequality
,”
Duke Math. J.
162
,
435
495
(
2013
).
19.
E. H.
Lieb
and
R.
Seiringer
,
The Stability of Matter in Quantum Mechanics
(
Cambridge University Press
,
2010
).
20.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics II: Fourier Analysis Self Adjointness
(
A Press, Inc.
,
1975
).
21.
N.
Rougerie
, “
Scaling limits of bosonic ground states from many-body to nonlinear Schrödinger
,” arXiv:2002.02678 (
2020
).
22.
E. H.
Lieb
, “
Variational principle for many-Fermion systems
,”
Phys. Rev. Lett.
46
,
457
(
1981
).
23.
V.
Bach
,
Hartree–Fock Theory, Lieb’s Variational Principle and Their Generalizations
(
EMS Press
,
2022
).
24.
N.
Rougerie
,
Théorèmes de de Finetti, limites de champ moyen et condensation de Bose-Einstein
(
Spartacus-Idh
,
2016
).
You do not currently have access to this content.