We study the semiclassical limit of quantum synchronization model and concentration estimates for the resulting limit model. From the Schrödinger-Lohe model, we rigorously derive the Vlasov-Lohe model using Wigner transform and Wigner measure method. In semiclassical limit, generalized Wigner distributions to the Schrödinger-Lohe model converge to a set of Wigner measures which corresponds to a weak solution to the Vlasov-Lohe model, and then we show the asymptotic collective behaviors of the Vlasov-Lohe model. When one-body potentials are identical, we show that complete synchronization emerges for the Vlasov-Lohe model. In contrast, for non-identical potentials the lack of boundedness results in practical synchronization for the integrals of solutions. Moreover, we construct a global existence of classical solutions to the Vlasov-Lohe model using the standard method of characteristics. Analysis in this work can deal with possibly non-identical potentials in which their differences are constant.

1.
M. A.
Lohe
, “
Quantum synchronization over quantum networks
,”
J. Phys. A: Math. Theor.
43
,
465301
(
2010
).
2.
M. A.
Lohe
, “
Non-Abelian Kuramoto models and synchronization
,”
J. Phys. A: Math. Theor.
42
,
395101
(
2009
).
3.
Y.
Kuramoto
,
Chemical Oscillations, Waves and Turbulence
(
Springer-Verlag
,
Berlin
,
1984
).
4.
Y.
Kuramoto
,
International Symposium on Mathematical Problems in Mathematical Physics
,
Lecture Notes in Theoretical Physics
(
Springer Berlin
,
Heidelberg
,
1975
), Vol.
30
, pp.
420
422
.
5.
P.
Antonelli
and
P.
Marcati
, “
A model of synchronization over quantum networks
,”
J. Phys. A: Math. Theor.
50
,
315101
(
2017
).
6.
H.
Huh
,
S.-Y.
Ha
, and
D.
Kim
, “
Asymptotic behavior and stability for the Schrödinger-Lohe model
,”
J. Math. Phys.
59
,
102701
(
2018
).
7.
H.
Huh
,
S.-Y.
Ha
, and
D.
Kim
, “
Emergent behaviors of the Schrödinger-Lohe model on cooperative-competitive networks
,”
J. Differ. Equations
263
,
8295
8321
(
2017
).
8.
H.
Huh
and
S.-Y.
Ha
, “
Dynamical system approach to synchronization of the coupled Schrödinger-Lohe system
,”
Q. Appl. Math.
75
,
555
579
(
2017
).
9.
E.
Wigner
, “
On the quantum correction for thermodynamic equilibrium
,”
Phys. Rev.
40
,
749
759
(
1932
).
10.
P.-L.
Lions
and
T.
Paul
, “
Sur les mesures de Wigner
,”
Rev. Mat. Iberoam.
9
,
553
618
(
1993
).
11.
R.
Carles
,
C.
Fermanian-Kammerer
,
N. J.
Mauser
, and
H. P.
Stimming
, “
On the time evolution of Wigner measures for Schrödinger equations
,”
Commun. Pure Appl. Anal.
8
,
559
585
(
2009
).
12.
M.
Brack
and
R.
Bhaduri
,
Semiclassical Physics
(
CRC Press
,
2003
).
13.
G.
Grynberg
,
A.
Aspect
, and
C.
Fabre
,
Introduction to Quantum Optics
(
Cambridge University Press
,
2010
).
14.
D.
Dürr
and
S.
Römer
, “
On the classical limit of Bohmian mechanics for Hagedorn wave packets
,”
J. Funct. Anal.
259
,
2404
2423
(
2010
).
15.
F.
Golse
,
M.
Clément
, and
T.
Paul
, “
On the mean field and classical limits of quantum mechanics
,”
Commun. Math. Phys.
343
,
165
205
(
2016
).
16.
P. A.
Markowich
and
N. J.
Mauser
, “
The classical limit of a self-consistent quantum-Vlasov equation in 3D
,”
Math. Models Methods Appl. Sci.
03
,
109
124
(
1993
).
17.
P. A.
Markowich
,
T.
Paul
, and
C.
Sparber
, “
Bohmian measures and their classical limit
,”
J. Funct. Anal.
259
,
1542
1576
(
2010
).
18.
S.-Y.
Ha
,
D.
Ko
,
J.
Park
, and
X.
Zhang
, “
Collective synchronization of classical and quantum oscillators
,”
EMS Surv. Math. Sci.
3
,
209
267
(
2016
).
19.
S.-Y.
Ha
,
G.
Hwang
, and
D.
Kim
, “
On the complete aggregation of the Wigner-Lohe model for identical potentials
,”
Networks Heterog. Media
17
,
665
686
(
2022
).
20.
P.
Antonelli
,
S.-Y.
Ha
,
D.
Kim
, and
P.
Marcati
, “
The Wigner-Lohe model for quantum synchronization and its emergent dynamics
,”
Networks Heterog. Media
12
,
403
416
(
2017
).
21.
P.
Gérard
,
P. A.
Markowich
,
N. J.
Mauser
, and
F.
Poupaud
, “
Homogenization limits and Wigner transforms
,”
Commun. Pure Appl. Math.
50
,
323
379
(
1997
);
Erratum
53
,
280
281
(
2000
).
22.
L.
Ambrosio
,
G.
Friesecke
, and
J.
Giannoulis
, “
Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions
,”
Commun. Partial Differ. Equations
35
,
1490
1515
(
2010
).
23.
P.
Zhang
,
Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations
,
Courant Lecture Notes in Mathematics
(
American Mathematical Society
,
2008
).
24.
M.
Gosson
,
The Wigner Transform
,
Advanced Textbooks in Mathematics
(
World Scientific Publishing Co. Pte. Ltd.
,
Hackensack, NJ
,
2017
).
25.
S.-Y.
Ha
and
E.
Tadmor
, “
From particle to kinetic and hydrodynamic descriptions of flocking
,”
Kinet. Relat. Models
1
,
415
435
(
2008
).
You do not currently have access to this content.