The connection between the R-matrix realization and Drinfeld’s realization of the quantum loop algebra is considered using the Gaussian decomposition approach proposed in Ding and Frenkel [Isomorphism of two realizations of quantum affine algebra , Commun. Math. Phys. 156, 277 (1993)]. Our main result is a description of the embedding homomorphism which relates the quantum affine algebra of rank n − 1 with a subalgebra of the corresponding algebra of rank n. Explicit relations between all Gaussian coordinates of the L-operators and the currents are presented.
REFERENCES
1.
V. G.
Drinfel’d
, “Quantum groups
,” J. Sov. Math.
41
, 898
(1988
).2.
V.
Chari
and A.
Pressley
, A Guide to Quantum Groups
(Cambridge University Press
, 1995
).3.
E. K.
Sklyanin
, L. A.
Takhtadzhyan
, and L. D.
Faddeev
, “Quantum inverse problem method. I
,” Theor. Math. Phys.
40
, 688
(1979
).4.
N. Y.
Reshetikhin
and M. A.
Semenov-Tian-Shansky
, “Central extensions of quantum current groups
,” Lett. Math. Phys.
19
, 133
(1990
).5.
V. G.
Drinfel’d
, “A new realization of Yangians and quantized affine algebras
,” Sov. Math., Dokl.
36
, 212
(1988
).6.
J.
Ding
and I. B.
Frenkel
, “Isomorphism of two realizations of quantum affine algebra
,” Commun. Math. Phys.
156
, 277
(1993
).7.
S. M.
Khoroshkin
and V. N.
Tolstoy
, “Universal R-matrix for quantized (super)algebras
,” Commun. Math. Phys.
141
, 599
(1991
).8.
S. M.
Khoroshkin
and V. N.
Tolstoy
, “On Drinfeld’s realization of quantum affine algebras
,” J. Geom. Phys.
11
, 445
(1993
).9.
N.
Hayaishi
and K.
Miki
, “L operators and Drinfeld’s generators
,” J. Math. Phys.
39
, 1623
(1998
).10.
N.
Jing
, M.
Liu
, and A.
Molev
, “Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: Type C
,” J. Math. Phys.
61
, 031701
(2020
); arXiv:1903.00204.11.
N.
Jing
, M.
Liu
, and A.
Molev
, “Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: Types B and D
,” SIGMA
16
, 043
(2020
); arXiv:1911.03496.12.
A.
Liashyk
and S.
Pakuliak
, “On the R-matrix realization of quantum loop algebras
,” SciPost Phys.
12
, 146
(2022
); arXiv:2106.10666.13.
A.
Shapiro
, “Three realizations of the quantum affine algebra
,” Theor. Math. Phys.
165
, 1421
(2010
); arXiv:1009.1932.14.
N.
Jing
, M.
Liu
, and A.
Molev
, “Isomorphism between the R-matrix and Drinfeld presentations of Yangian in types B, C and D
,” Commun. Math. Phys.
361
, 827
(2018
); arXiv:1705.08155.15.
N.
Jing
and M.
Liu
, “Isomorphism between two realizations of the Yangian
,” J. Phys. A: Math. Theor.
46
, 075201
(2013
); arXiv:1301.3962.16.
J.
Ding
and S. M.
Khoroshkin
, “Weyl group extension of quantized current algebras
,” Transform. Groups
5
, 35
(2000
).17.
S.
Khoroshkin
and S.
Pakuliak
, “A computation of san universal weight function for the quantum affine algebra
,” Kyoto J. Math.
48
(2
), 277
–321
(2008
); arXiv:0711.2819.18.
A.
Liashyk
and S.
Pakuliak
, “Gauss coordinates vs currents for the Yangian doubles of the classical types
,” SIGMA
16
, 120
(2020
); arXiv:2006.01579.19.
M.
Jimbo
, “Quantum R matrix for the generalized Toda system
,” Commun. Math. Phys.
102
, 537
(1986
).20.
B.
Enriquez
, S.
Khoroshkin
, and S.
Pakuliak
, “Weight functions and Drinfeld currents
,” Commun. Math. Phys.
276
, 691
(2007
).21.
M. L.
Nazarov
, “Quantum Berezinian and the classical capelli identity
,” Lett. Math. Phys.
21
, 123
(1991
).22.
A.
Oskin
, S.
Pakuliak
, and A.
Silantyev
, “On the universal weight function for the quantum affine algebra
,” St. Petersburg Math. J.
21
, 651
(2010
).23.
A.
Hutsalyuk
, A.
Liashyk
, S.
Pakuliak
, E.
Ragoucy
, and N. A.
Slavnov
, “Current presentation for the super-Yangian double and Bethe vectors
,” Usp. Mat. Nauk
72
, 33
(2017
); arXiv:1611.09620.24.
J.
Beck
, “Convex bases of PBW type for quantum affine algebras
,” Commun. Math. Phys.
165
, 193
(1994
).25.
A.
Liashyk
, S.
Pakuliak
, E.
Ragoucy
, and N. A.
Slavnov
, “New symmetries of -invariant Bethe vectors
,” J. Stat. Mech.:Theory Exp.
2019
, 044001
.© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.