The connection between the R-matrix realization and Drinfeld’s realization of the quantum loop algebra Uq(Dn(2)) is considered using the Gaussian decomposition approach proposed in Ding and Frenkel [Isomorphism of two realizations of quantum affine algebra Uq(gl̂(n)), Commun. Math. Phys. 156, 277 (1993)]. Our main result is a description of the embedding homomorphism which relates the quantum affine algebra of rank n − 1 with a subalgebra of the corresponding algebra of rank n. Explicit relations between all Gaussian coordinates of the L-operators and the currents are presented.

1.
V. G.
Drinfel’d
, “
Quantum groups
,”
J. Sov. Math.
41
,
898
(
1988
).
2.
V.
Chari
and
A.
Pressley
,
A Guide to Quantum Groups
(
Cambridge University Press
,
1995
).
3.
E. K.
Sklyanin
,
L. A.
Takhtadzhyan
, and
L. D.
Faddeev
, “
Quantum inverse problem method. I
,”
Theor. Math. Phys.
40
,
688
(
1979
).
4.
N. Y.
Reshetikhin
and
M. A.
Semenov-Tian-Shansky
, “
Central extensions of quantum current groups
,”
Lett. Math. Phys.
19
,
133
(
1990
).
5.
V. G.
Drinfel’d
, “
A new realization of Yangians and quantized affine algebras
,”
Sov. Math., Dokl.
36
,
212
(
1988
).
6.
J.
Ding
and
I. B.
Frenkel
, “
Isomorphism of two realizations of quantum affine algebra Uq(gl̂(n))
,”
Commun. Math. Phys.
156
,
277
(
1993
).
7.
S. M.
Khoroshkin
and
V. N.
Tolstoy
, “
Universal R-matrix for quantized (super)algebras
,”
Commun. Math. Phys.
141
,
599
(
1991
).
8.
S. M.
Khoroshkin
and
V. N.
Tolstoy
, “
On Drinfeld’s realization of quantum affine algebras
,”
J. Geom. Phys.
11
,
445
(
1993
).
9.
N.
Hayaishi
and
K.
Miki
, “
L operators and Drinfeld’s generators
,”
J. Math. Phys.
39
,
1623
(
1998
).
10.
N.
Jing
,
M.
Liu
, and
A.
Molev
, “
Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: Type C
,”
J. Math. Phys.
61
,
031701
(
2020
); arXiv:1903.00204.
11.
N.
Jing
,
M.
Liu
, and
A.
Molev
, “
Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: Types B and D
,”
SIGMA
16
,
043
(
2020
); arXiv:1911.03496.
12.
A.
Liashyk
and
S.
Pakuliak
, “
On the R-matrix realization of quantum loop algebras
,”
SciPost Phys.
12
,
146
(
2022
); arXiv:2106.10666.
13.
A.
Shapiro
, “
Three realizations of the quantum affine algebra Uq(A2(2))
,”
Theor. Math. Phys.
165
,
1421
(
2010
); arXiv:1009.1932.
14.
N.
Jing
,
M.
Liu
, and
A.
Molev
, “
Isomorphism between the R-matrix and Drinfeld presentations of Yangian in types B, C and D
,”
Commun. Math. Phys.
361
,
827
(
2018
); arXiv:1705.08155.
15.
N.
Jing
and
M.
Liu
, “
Isomorphism between two realizations of the Yangian Y(so3)
,”
J. Phys. A: Math. Theor.
46
,
075201
(
2013
); arXiv:1301.3962.
16.
J.
Ding
and
S. M.
Khoroshkin
, “
Weyl group extension of quantized current algebras
,”
Transform. Groups
5
,
35
(
2000
).
17.
S.
Khoroshkin
and
S.
Pakuliak
, “
A computation of san universal weight function for the quantum affine algebra Uq(gl(N))
,”
Kyoto J. Math.
48
(
2
),
277
321
(
2008
); arXiv:0711.2819.
18.
A.
Liashyk
and
S.
Pakuliak
, “
Gauss coordinates vs currents for the Yangian doubles of the classical types
,”
SIGMA
16
,
120
(
2020
); arXiv:2006.01579.
19.
M.
Jimbo
, “
Quantum R matrix for the generalized Toda system
,”
Commun. Math. Phys.
102
,
537
(
1986
).
20.
B.
Enriquez
,
S.
Khoroshkin
, and
S.
Pakuliak
, “
Weight functions and Drinfeld currents
,”
Commun. Math. Phys.
276
,
691
(
2007
).
21.
M. L.
Nazarov
, “
Quantum Berezinian and the classical capelli identity
,”
Lett. Math. Phys.
21
,
123
(
1991
).
22.
A.
Oskin
,
S.
Pakuliak
, and
A.
Silantyev
, “
On the universal weight function for the quantum affine algebra Uq(glN)
,”
St. Petersburg Math. J.
21
,
651
(
2010
).
23.
A.
Hutsalyuk
,
A.
Liashyk
,
S.
Pakuliak
,
E.
Ragoucy
, and
N. A.
Slavnov
, “
Current presentation for the super-Yangian double and Bethe vectors
,”
Usp. Mat. Nauk
72
,
33
(
2017
); arXiv:1611.09620.
24.
J.
Beck
, “
Convex bases of PBW type for quantum affine algebras
,”
Commun. Math. Phys.
165
,
193
(
1994
).
25.
A.
Liashyk
,
S.
Pakuliak
,
E.
Ragoucy
, and
N. A.
Slavnov
, “
New symmetries of gl(N)-invariant Bethe vectors
,”
J. Stat. Mech.:Theory Exp.
2019
,
044001
.
You do not currently have access to this content.