In this paper, we derive the globally exponential decay and inviscid limit of analytic solutions to the compressible Oldroyd-B model. Due to the pure damping effects of the linearized compressible Oldroyd-B model without viscosity, we obtain a globally viscosity-independent a priori estimate. However, the bilinear term possesses one more order of derivative than the linear part, and no effective structure has been found to address this derivative loss problem. Therefore, we can only establish our results in the analytic energy space rather than the Sobolev space.

1.
Chemin
,
J. Y.
and
Masmoudi
,
N.
, “
About lifespan of regular solutions of equations related to viscoelastic fluids
,”
SIAM J. Math. Anal.
33
(
1
),
84
112
(
2001
).
2.
Chen
,
Q.
and
Hao
,
X.
, “
Global well-posedness in the critical Besov spaces for the incompressible Oldroyd-B model without damping mechanism
,”
J. Math. Fluid Mech.
21
(
3
),
42
(
2019
).
3.
Chen
,
Q.
and
Miao
,
C.
, “
Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces
,”
Nonlinear Anal.: Theory, Methods Appl.
68
(
7
),
1928
1939
(
2008
).
4.
Elgindi
,
T. M.
and
Liu
,
J.
, “
Global wellposedness to the generalized Oldroyd type models in R3
,”
J. Differ. Equations
259
(
5
),
1958
1966
(
2015
).
5.
Elgindi
,
T. M.
and
Rousset
,
F.
, “
Global regularity for some Oldroyd-B type models
,”
Commun. Pure Appl. Math.
68
(
11
),
2005
2021
(
2015
).
6.
Fang
,
D.
and
Zi
,
R.
, “
Incompressible limit of Oldroyd-B fluids in the whole space
,”
J. Differ. Equations
256
(
7
),
2559
2602
(
2014
).
7.
Fang
,
D.
and
Zi
,
R.
, “
Global solutions to the Oldroyd-B model with a class of large initial data
,”
SIAM J. Math. Anal.
48
(
2
),
1054
1084
(
2016
).
8.
Guillopé
,
C.
,
Salloum
,
Z.
, and
Talhouk
,
R.
, “
Regular flows of weakly compressible viscoelastic fluids and the incompressible limit
,”
Discrete Contin. Dyn. Syst. B
14
(
3
),
1001
1028
(
2010
).
9.
Guillopé
,
C.
and
Saut
,
J. C.
, “
Existence results for the flow of viscoelastic fluids with a differential constitutive law
,”
Nonlinear Anal.: Theory, Methods Appl.
15
(
9
),
849
869
(
1990
).
10.
Hu
,
X.
and
Wang
,
D.
, “
Global existence for the multi-dimensional compressible viscoelastic flows
,”
J. Differ. Equations
250
(
2
),
1200
1231
(
2011
).
11.
Lei
,
Z.
, “
Global existence of classical solutions for some Oldroyd-B model via the incompressible limit
,”
Chin. Ann. Math., Ser. B
27
(
5
),
565
580
(
2006
).
12.
Lei
,
Z.
,
Masmoudi
,
N.
, and
Zhou
,
Y.
, “
Remarks on the blowup criteria for Oldroyd models
,”
J. Differ. Equations
248
(
2
),
328
341
(
2010
).
13.
Lei
,
Z.
and
Zhou
,
Y.
, “
Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit
,”
SIAM J. Math. Anal.
37
(
3
),
797
814
(
2005
).
14.
Lions
,
P. L.
and
Masmoudi
,
N.
, “
Global solutions for some Oldroyd models of non-Newtonian flows
,”
Chin. Ann. Math.
21
(
2
),
131
146
(
2000
).
15.
Oldroyd
,
J. G.
, “
Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids
,”
Proc. Roy. Soc. London Ser. A
245
,
278
297
(
1958
).
16.
Pan
,
X.
and
Xu
,
J.
, “
Global existence and optimal decay estimates of the compressible viscoelastic flows in Lp critical spaces
,”
Discrete Contin. Dyn. Syst. A
39
(
4
),
2021
2057
(
2019
).
17.
Pan
,
X.
,
Xu
,
J.
, and
Zhu
,
Y.
, “
Global existence in critical spaces for non Newtonian compressible viscoelastic flows
,”
J. Differ. Equations
331
,
162
191
(
2022
).
18.
Pan
,
X.
, “
Globally analytical solutions of the compressible Oldroyd-B model without retardation
,”
SIAM J. Math. Anal.
56
(
4
),
4854
4869
(
2024
).
19.
Qian
,
J.
and
Zhang
,
Z.
, “
Global well-posedness for compressible viscoelastic fluids near equilibrium
,”
Arch. Ration. Mech. Anal.
198
(
3
),
835
868
(
2010
).
20.
Zhai
,
X.
, “
Global solutions to the n-dimensional incompressible Oldroyd-B model without damping mechanism
,”
J. Math. Phys.
62
(
2
),
021503
(
2021
).
21.
Zhou
,
Z.
,
Zhu
,
C.
, and
Zi
,
R.
, “
Global well-posedness and decay rates for the three dimensional compressible Oldroyd-B model
,”
J. Differ.Equations
265
(
4
),
1259
1278
(
2018
).
22.
Zhu
,
Y.
, “
Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism
,”
J. Funct. Anal.
274
(
7
),
2039
2060
(
2018
).
23.
Zhu
,
Y.
, “
Global classical solutions of 3D compressible viscoelastic system near equilibrium
,”
Calculus Var. Partial Differ. Equations
61
(
1
),
21
(
2022
).
24.
Zi
,
R.
, “
Vanishing viscosity limit of the 3D incompressible Oldroyd-B model
,”
Ann. Inst. Henri Poincare C, Anal. Nonlinéaire
38
(
6
),
1841
1867
(
2021
).
25.
Zi
,
R.
,
Fang
,
D.
, and
Zhang
,
T.
, “
Global solution to the incompressible Oldroyd-B model in the critical Lp framework: The case of the non-small coupling parameter
,”
Arch. Ration. Mech. Anal.
213
(
2
),
651
687
(
2014
).
You do not currently have access to this content.