We consider a basis of square integrable functions on a rectangle, contained in R2, constructed with Legendre polynomials, suitable, for instance, for the analogical description of images on the plane or in other fields of application of the Legendre polynomials in higher dimensions. After extending the Legendre polynomials to any arbitrary interval of the form [a, b], from its original form on [−1, 1], we generalize the basis of Legendre polynomials to two dimensions. This is the first step to generalize the basis to n-dimensions. We present some mathematical constructions such as Gel’fand triplets appropriate in this context. “Smoothness” of functions on space of test functions and some other properties are revisited, as well as the continuity of generators of su(1, 1) in this context.

1.
S.
Qi
,
Y.
Zhang
,
C.
Wang
,
J.
Zhou
, and
X.
Cao
, “
A survey of orthogonal moments for image representation: Theory, implementation, and evaluation
,”
ACM Comput. Surv.
55
,
1
35
(
2023
).
2.
W. A.
Jassim
,
R.
Mukundan
, and
P.
Raveendran
, “
New orthogonal polynomials for speech signal and image processing
,”
IET Signal Proces.
6
,
713
723
(
2012
).
3.
K. W.
See
,
K. S.
Loke
,
P. A.
Lee
, and
K. F.
Loe
, “
Image reconstruction using various discrete orthogonal polynomials in comparison with DCT
,”
Appl. Math. Comput.
193
,
346
359
(
2007
).
4.
J.
Zhou
,
H.
Shu
,
H.
Zhu
,
C.
Toumoulin
, and
L.
Luo
, “
Image analysis by discrete orthogonal Hahn moments
,” in
Image Analysis and Recognition. ICIAR 2005
, Lecture Notes in Computer Science, Vol.
3656
, edited by
M.
Kamel
and
A.
Campilho
(
Springer
,
Berlin, Heidelberg
,
2005
), pp.
524
531
.
5.
O.
Hunt
and
R.
Mukunda
, “
Image coding using orthogonal basis functions
,” Rep. Comput. Graphics Image Processing Res. Group,
2004
, https://api.semanticscholar.org/CorpusID:16690597.
6.
P.-T.
Yap
,
R.
Paramesran
, and
S.-H.
Ong
, “
Image analysis by Krawtchouk moments
,”
IEEE Trans. Image Process.
12
,
1367
1377
(
2003
).
7.
R.
Mukundan
,
S. H.
Ong
, and
P. A.
Lee
, “
Image analysis by Tchebichef moments
,”
IEEE Trans. Image Process.
10
,
1357
1364
(
2001
).
8.
M. R.
Teague
, “
Image analysis via the general theory of moments
,”
J. Opt. Soc. Am.
70
,
920
930
(
1980
).
9.
M.-K.
Hu
, “
Visual pattern recognition by moment invariants
,”
IRE Trans. Inf. Theory
8
,
179
187
(
1962
).
10.
R.
Mukundan
and
K. R.
Ramakrishnan
, “
Fast computation of Legendre and Zernike moments
,”
Pattern Recognit.
28
,
1433
1442
(
1995
).
11.
C.-W.
Chong
,
P.
Raveendran
, and
R.
Mukundan
, “
Translation and scale invariants of Legendre moments
,”
Pattern Recognit.
37
,
119
129
(
2004
).
12.
P.-T.
Yap
and
R.
Paramesran
, “
An efficient method for the computation of Legendre moments
,”
IEEE Trans. Pattern Anal. Mach. Intell.
27
,
1996
2002
(
2005
).
13.
B.
Xiao
,
G.
Wang
, and
W.
Li
, “
Radial shifted Legendre moments for image analysis and invariant image recognition
,”
Image Vis. Comput.
32
,
994
1006
(
2014
).
14.
T.
Yang
,
J.
Ma
,
Y.
Miao
,
X.
Liu
,
X.
Wang
, and
Q.
Meng
, “
PLCOM: Privacy-preserving outsourcing computation of Legendre circularly orthogonal moment over encrypted image data
,”
Inf. Sci.
505
,
198
214
(
2019
).
15.
K. M.
Hosny
,
M. M.
Darwish
, and
T.
Aboelenen
, “
New fractional-order Legendre-Fourier moments for pattern recognition applications
,”
Pattern Recognit.
103
,
107324
(
2020
).
16.
G.
Szegö
,
Orthogonal Polynomials
(
Am. Math. Society
,
Providence, RI
,
2003
).
17.
E.
Celeghini
and
M. A.
del Olmo
, “
Coherent orthogonal polynomials
,”
Ann. Phys.
335
,
78
85
(
2013
).
18.
A.-M.
Legendre
, “
Recherches sur l’attraction des sphéroïdes homogènes
,” Mémoires de Mathématiques et de Physique, présentés à l’Académie Royale des Sciences par divers savans, et lus dans ses Assemblées X,
1785
, pp.
411
435
.
19.
E.
Celeghini
, “
Operator algebra in the space of images
,”
J. Phys.: Conf. Ser.
880
,
012055
(
2017
).
20.
E.
Celeghini
,
M.
Gadella
, and
M. A.
del Olmo
, “
Zernike functions, rigged Hilbert spaces, and potential applications
,”
J. Math. Phys.
60
,
083508
(
2019
).
21.
E.
Celeghini
,
M.
Gadella
, and
M. A.
del Olmo
, “
Symmetry groups, quantum mechanics and generalized Hermite functions
,”
Mathematics
10
,
1448
(
2022
).
22.
I. M.
Gel’fand
and
N. Ya.
Vilenkin
,
Generalized Functions: Applications to Harmonic Analysis
(
Academic
,
New York
,
1964
), Vol.
4
.
23.
J. E.
Roberts
, “
Rigged Hilbert spaces in quantum mechanics
,”
Commun. Math. Phys.
3
,
98
119
(
1966
).
24.
J.-P.
Antoine
, “
Dirac formalism and symmetry problems in quantum mechanics. I. General Dirac formalism
,”
J. Math. Phys.
10
,
53
69
(
1969
).
25.
O.
Melsheimer
, “
Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. I. General theory
,”
J. Math. Phys.
15
,
902
916
(
1974
).
26.
M.
Gadella
and
F.
Gómez
, “
Dirac formulation of quantum mechanics: Recent and new results
,”
Rep. Math. Phys.
59
,
127
143
(
2007
).
27.
A.
Bohm
,
The Rigged Hilbert Space and Quantum Mechanics
, Lecture Notes in Physics, Vol.
78
(
Springer
,
Berlin
,
1978
).
28.
E.
Celeghini
,
M.
Gadella
, and
M. A.
del Olmo
, “
Applications of rigged Hilbert spaces in quantum mechanics and signal processing
,”
J. Math. Phys.
57
,
072105
(
2016
).
29.
C.
Trapani
,
S.
Triolo
, and
F.
Tschinke
, “
Distribution frames and bases
,”
J. Fourier Anal. Appl.
25
,
2109
2140
(
2019
).
30.
S.
Cambanis
, “
Bases in L2 spaces with applications to stochastic processes with orthogonal increments
,”
Proc. Am. Math. Soc.
29
,
284
290
(
1971
).
31.
M.
Gadella
and
F.
Gómez
, “
On the mathematical basis of the Dirac formulation of quantum mechanics
,”
Int. J. Theor. Phys.
42
,
2225
2254
(
2003
).
32.
M.
Gadella
and
F.
Gómez
, “
A measure-theoretical approach to the nuclear and inductive spectral theorems
,”
Bull. Sci. Math.
129
,
567
590
(
2005
).
33.
E.
Celeghini
,
M.
Gadella
, and
M. A.
del Olmo
, “
Groups, Jacobi functions, and rigged Hilbert spaces
,”
J. Math. Phys.
61
,
033508
(
2020
).
34.
NIST Handbook of Mathematical Functions
, edited by
F. W. J.
Olver
,
D. W.
Lozie
,
R. F.
Boisiert
, and
C. W.
Clark
(
Cambridge University Press
,
Cambridge, MA
,
2010
).
35.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics: Functional Analysis I
(
Academic Press
,
San Diego
,
1980
).
36.
H. J.
Weber
and
G. B.
Arfken
,
Essential Mathematical Methods for Physicists
(
Elsevier-Academic Press
,
San Diego
,
2004
).
37.
J.
Horvath
,
Topological Vector Spaces and Distributions
(
Addison-Wesley
,
New York
,
1966
).
You do not currently have access to this content.