Chiral anomalies resulting from the breaking of classical symmetries at the quantum level are fundamental to quantum field theory and gaining ever-growing importance in the description of topological materials in condensed matter physics. Here we present analytical solutions of the Dirac equation for massless 3 + 1 fermions confined to an infinite stripe and placed into a background gauge field forming a triangular potential well across the width of the stripe. Such an effective 1 + 1 system hosts zero-energy modes resulting in the gauge field-dependent chiral anomaly structure. This problem has a direct relation to a half-bearded graphene nanoribbon placed into an in-plane external electric field and offers it an exact solution in terms of new special functions that are similar but not reducible to Airy functions.

1.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
(
Elsevier
,
2013
), Vol.
3
.
2.
D. J.
Griffiths
and
D. F.
Schroeter
,
Introduction to Quantum Mechanics
(
Cambridge University Press
,
2018
).
3.
J.
Yoshida
, “
Classical versus quantum mechanical calculation of the electron distribution at the n-AlGaAs/GaAs heterointerface
,”
IEEE Trans. Electron Devices
33
,
154
156
(
1986
).
4.
A.
Khondker
and
A.
Anwar
, “
Analytical models for AlGaAs/GaAs heterojunction quantum wells
,”
Solid-State Electron.
30
,
847
852
(
1987
).
5.
H.
Zhang
and
J.
Lynn
, “
New exact solution of the one-dimensional Schrödinger equation and its application to polarized neutron reflectometry
,”
Phys. Rev. Lett.
70
,
77
(
1993
).
6.
D.
Parfitt
and
M.
Portnoi
, “
The two-dimensional hydrogen atom revisited
,”
J. Math. Phys.
43
,
4681
4691
(
2002
).
7.
A.
Lahiri
,
P. K.
Roy
, and
B.
Bagchi
, “
Supersymmetry in quantum mechanics
,”
Int. J. Mod. Phys. A
5
,
1383
1456
(
1990
).
8.
A.
Sokolov
, “
Factorization of nonlinear supersymmetry in one-dimensional quantum mechanics. II: Proofs of theorems on reducibility
,”
J. Math. Sci.
151
,
2924
2936
(
2008
).
9.
C.
Downing
, “
On a solution of the Schrödinger equation with a hyperbolic double-well potential
,”
J. Math. Phys.
54
,
072101
(
2013
).
10.
R. R.
Hartmann
, “
Bound states in a hyperbolic asymmetric double-well
,”
J. Math. Phys.
55
,
012105
(
2014
).
11.
M. F.
Manning
, “
Exact solutions of the Schrödinger equation
,”
Phys. Rev.
48
,
161
(
1935
).
12.
V.
Shahnazaryan
,
T.
Ishkhanyan
,
T.
Shahverdyan
, and
A.
Ishkhanyan
, “
New relations for the derivative of the confluent Heun function
,” Armen. J. Phys.
5
, 146–155 (2012), see https://www.academia.edu/download/67744571/New_relations_for_the_derivative_of_the_20210625-2999-5umw2u.pdf.
13.
T.
Ishkhanyan
and
A.
Ishkhanyan
, “
Solutions of the bi-confluent Heun equation in terms of the Hermite functions
,”
Ann. Phys.
383
,
79
91
(
2017
).
14.
A.
Capri
and
R.
Ferrari
, “
Hydrogenic atoms in one-plus-one dimensions
,”
Can. J. Phys.
63
,
1029
1031
(
1985
).
15.
S.
Abe
and
T.
Fujita
, “
A simple analytic solution of the Dirac equation with a scalar linear potential
,”
Nucl. Phys. A
475
,
657
662
(
1987
).
16.
H.
Galic
, “
Fun and frustration with hydrogen in a 1 + 1 dimension
,”
Am. J. Phys.
56
,
312
317
(
1988
).
17.
D.
Hofer
and
W.
Stocker
, “
A Dirac particle in a scalar potential depending on one spatial coordinate
,”
Phys. Lett. A
138
,
463
464
(
1989
).
18.
R.
Bhalerao
and
B.
Ram
, “
Fun and frustration with quarkonium in a 1 + 1 dimension
,”
Am. J. Phys.
69
,
817
818
(
2001
).
19.
J. R.
Hiller
, “
Solution of the one-dimensional Dirac equation with a linear scalar potential
,”
Am. J. Phys.
70
,
522
524
(
2002
).
20.
Y.
Chargui
,
A.
Trabelsi
, and
L.
Chetouani
, “
Exact solution of the (1 + 1)-dimensional Dirac equation with vector and scalar linear potentials in the presence of a minimal length
,”
Phys. Lett. A
374
,
531
534
(
2010
).
21.
H.
Tezuka
, “
Analytical solutions of the Dirac equation with a scalar linear potential
,”
AIP Adv.
3
,
082135
(
2013
).
22.
W. S.
Jaronski
, “
The linear potential and the Dirac equation
,” arXiv:2108.05953 (
2021
).
23.
R.
Jackiw
and
G.
Semenoff
, “
Continuum quantum field theory for a linearly conjugated diatomic polymer with fermion fractionization
,”
Phys. Rev. Lett.
50
,
439
(
1983
).
24.
D.
DiVincenzo
and
E.
Mele
, “
Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds
,”
Phys. Rev. B
29
,
1685
(
1984
).
25.
R.
Renan
,
M.
Pacheco
, and
C.
Almeida
, “
Treating some solid state problems with the Dirac equation
,”
J. Phys. A: Math. Gen.
33
,
L509
(
2000
).
26.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
,
183
191
(
2007
).
27.
D. L.
Bergman
and
K.
Le Hur
, “
Near-zero modes in condensate phases of the Dirac theory on the honeycomb lattice
,”
Phys. Rev. B
79
,
184520
(
2009
).
28.
L.
Brey
and
H.
Fertig
, “
Electronic states of graphene nanoribbons studied with the Dirac equation
,”
Phys. Rev. B
73
,
235411
(
2006
).
29.
A.
Akhmerov
and
C.
Beenakker
, “
Boundary conditions for Dirac fermions on a terminated honeycomb lattice
,”
Phys. Rev. B
77
,
085423
(
2008
).
30.
K.
Wakabayashi
,
S.
Okada
,
R.
Tomita
,
S.
Fujimoto
, and
Y.
Natsume
, “
Edge states and flat bands of graphene nanoribbons with edge modification
,”
J. Phys. Soc. Jpn.
79
,
034706
(
2010
).
31.
W.
Jaskólski
,
A.
Ayuela
,
M.
Pelc
,
H.
Santos
, and
L.
Chico
, “
Edge states and flat bands in graphene nanoribbons with arbitrary geometries
,”
Phys. Rev. B
83
,
235424
(
2011
).
32.
T.
Li
,
M.
Lin
,
S.
Chang
, and
T.
Lin
, “
Electronic properties of bearded graphene nanoribbons
,”
J. Phys. Chem. Solids
73
,
1245
1251
(
2012
).
33.
V. A.
Saroka
,
K. G.
Batrakov
,
V. A.
Demin
, and
L. A.
Chernozatonskii
, “
Band gaps in jagged and straight graphene nanoribbons tunable by an external electric field
,”
J. Phys.: Condens. Matter
27
,
145305
(
2015
).
34.
V. A.
Saroka
and
K. G.
Batrakov
, “
Dirac electrons of graphene nanoribbons tunable by transverse electric field
,” in
Physics, Chemistry and Applications of Nanostructures
, edited by
V. E.
Borisenko
,
S. V.
Gaponenko
,
V. S.
Gurin
, and
C. H.
Kam
(
World Scientific
,
2015
), pp.
240
243
.
35.
V. A.
Saroka
and
K. G.
Batrakov
, “
Zigzag-shaped superlattices on the basis of graphene nanoribbons: Structure and electronic properties
,”
Russ. Phys. J.
59
,
633
639
(
2016
).
36.
K.
Wakabayashi
, “
Electronic transport properties of nanographite ribbon junctions
,”
Phys. Rev. B
64
,
125428
(
2001
).
37.
K.
Kusakabe
and
M.
Maruyama
, “
Magnetic nanographite
,”
Phys. Rev. B
67
,
092406
(
2003
).
38.
M.
Kohmoto
and
Y.
Hasegawa
, “
Zero modes and edge states of the honeycomb lattice
,”
Phys. Rev. B
76
,
205402
(
2007
).
39.
V. A.
Saroka
,
F.
Kong
,
C. A.
Downing
,
R. B.
Payod
,
F. R.
Fischer
,
X.
Sun
, and
L.
Bogani
, “
Tunable chiral anomalies and coherent transport on a honeycomb lattice
,” arXiv:2310.02148 (
2023
).
40.
T. G.
Pedersen
and
H. D.
Cornean
, “
Enhanced Stark effect in Dirac materials
,”
J. Phys.: Condens. Matter
34
,
435301
(
2022
).
41.
A. H.
Castro Neto
,
F.
Guinea
,
N. M.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
162
(
2009
).
42.
L.
Landau
and
E.
Lifshitz
,
The Classical Theory of Fields: Volume 2
,
Course of Theoretical Physics
(
Elsevier Science
,
1975
).
43.
V.
Berestetskii
,
E.
Lifshitz
, and
L.
Pitaevskii
,
Quantum Electrodynamics: Volume 4
,
Course of Theoretical Physics
(
Elsevier Science
,
1982
).
44.
E.
Kreyszig
,
Advanced Engineering Mathematics
, 10th ed. (
Wiley
,
2020
).
45.
R.
Jackiw
and
C.
Rebbi
, “
Solitons with fermion number ½
,”
Phys. Rev. D
13
,
3398
(
1976
).
46.
S.-Q.
Shen
,
Topological Insulators
(
Springer
,
2012
), Vol.
174
.
47.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
,
Applied Mathematics Series No. 55
, 10th ed. (
United States Government Printing Office
,
1972
).
48.
R.
Arouca
,
A.
Cappelli
, and
T. H.
Hansson
, “
Quantum field theory anomalies in condensed matter physics
,”
SciPost Phys. Lect. Notes
2022
,
62
.
49.
J.
Fröhlich
, “
Gauge invariance and anomalies in condensed matter physics
,”
J. Math. Phys.
64
,
031903
(
2023
).
50.
C.
Callan
and
J.
Harvey
, “
Anomalies and fermion zero modes on strings and domain walls
,”
Nucl. Phys. B
250
,
427
436
(
1985
).
51.
E.
Witten
and
K.
Yonekura
, “
Anomaly inflow and the η-invariant
,” in
Memorial Volume for Shoucheng Zhang
(
World Scientific
,
2022
), pp.
283
352
.
You do not currently have access to this content.