We study grand-canonical interacting fermionic systems in the mean-field regime, in a trapping potential. We provide the first order term of integrated and pointwise Weyl laws, but in the case with interaction. More precisely, we prove the convergence of the densities of the grand-canonical Hartree-Fock ground state to the Thomas-Fermi ground state in the semiclassical limit ℏ → 0. For the proof, we write the grand-canonical version of the results of Fournais, Lewin, and Solovej [Calculus Var. Partial Differ. Equations 57, 105 (2018)] and Conlon [Commun. Math. Phys. 88, 133 (1983)].
REFERENCES
1.
Bach
, V.
, “Error bound for the Hartree-Fock energy of atoms and molecules
,” Commun. Math. Phys.
147
, 527
–548
(1992
).2.
Bach
, V.
, Lieb
, E. H.
, Loss
, M.
, and Solovej
, J. P.
, “There are no unfilled shells in unrestricted Hartree-Fock theory
,” Phys. Rev. Lett.
72
, 2981
–2983
(1994
).3.
Conlon
, J. G.
, “Semi-classical limit theorems for Hartree-Fock theory
,” Commun. Math. Phys.
88
, 133
–150
(1983
).4.
Deleporte
, A.
and Lambert
, G.
, “Universality for free fermions and the local Weyl law for semiclassical Schrödinger operators
,” J. Eur. Math. Soc.
(published online); arXiv:2109.02121.5.
Dimassi
, M.
and Sjostrand
, J.
, Spectral Asymptotics in the Semi-Classical Limit
(Cambridge University Press
, 1999
), Vol. 268
.6.
Fournais
, S.
, Lewin
, M.
, and Solovej
, J. P.
, “The semi-classical limit of large fermionic systems
,” Calculus Var. Partial Differ. Equations
57
, 105
(2018
).7.
Frank
, R. L.
, Hundertmark
, D.
, Jex
, M.
, and Nam
, P. T.
, “The Lieb-Thirring inequality revisited
,” J. Eur. Math. Soc.
23
, 2583
–2600
(2021
).8.
Frank
, R. L.
, Laptev
, A.
, and Weidl
, T.
, Schrödinger Operators: Eigenvalues and Lieb-Thirring Inequalities
, Cambridge Studies in Advanced Mathematics Vol. 200
(Cambridge University Press
, Cambridge
, 2022
).9.
Lenzmann
, E.
and Lewin
, M.
, “Minimizers for the Hartree-Fock-Bogoliubov theory of neutron stars and white dwarfs
,” Duke Math. J.
152
, 257
–315
(2010
).10.
Lewin
, M.
, “Geometric methods for nonlinear many-body quantum systems
,” J. Funct. Anal.
260
, 3535
–3595
(2011
).11.
Lewin
, M.
and Sabin
, J.
, “The Hartree equation for infinitely many particles I. Well-posedness theory
,” Commun. Math. Phys.
334
, 117
–170
(2015
).12.
Lewin
, M.
and Sabin
, J.
, “The Hartree and Vlasov equations at positive density
,” Commun. Partial Differ. Equations
45
, 1702
–1754
(2020
).13.
Lieb
, E. H.
and Loss
, M.
, Analysis
, 2nd ed., Graduate Studies in Mathematics Vol. 14
(American Mathematical Society
, Providence, RI
, 2001
).14.
Lieb
, E. H.
and Simon
, B.
, “Thomas-Fermi theory revisited
,” Phys. Rev. Lett.
31
, 681
(1973
).15.
Lieb
, E. H.
and Simon
, B.
, “The Thomas-Fermi theory of atoms, molecules and solids
,” Adv. Math.
23
, 22
–116
(1977
).16.
Lieb
, E. H.
and Thirring
, W. E.
, “Bound for the kinetic energy of fermions which proves the stability of matter
,” Phys. Rev. Lett.
35
, 1116
(1975
).17.
Lieb
, E. H.
and Thirring
, W. E.
, “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities
,” in Studies in Mathematical Physics
(Springer
, 1976
), pp. 269
–303
.18.
Lions
, P.-L.
, “Solutions of Hartree-Fock equations for Coulomb systems
,” Commun. Math. Phys.
109
, 33
–97
(1987
).19.
Olver
, F.
and Peters
, A. K.
, Asymptotics and Special Functions
(CRC Press
, 1997
).20.
Simon
, B.
, Functional Integration and Quantum Physics
, 2nd ed. (AMS Chelsea Publishing
, Providence, RI
, 2005
).21.
Wigner
, E.
, “On the quantum correction for thermodynamic equilibrium
,” Phys. Rev.
40
, 749
(1932
).22.
Zworski
, M.
, Semiclassical Analysis
(American Mathematical Society
, 2012
), Vol. 138
.© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.