We study grand-canonical interacting fermionic systems in the mean-field regime, in a trapping potential. We provide the first order term of integrated and pointwise Weyl laws, but in the case with interaction. More precisely, we prove the convergence of the densities of the grand-canonical Hartree-Fock ground state to the Thomas-Fermi ground state in the semiclassical limit → 0. For the proof, we write the grand-canonical version of the results of Fournais, Lewin, and Solovej [Calculus Var. Partial Differ. Equations 57, 105 (2018)] and Conlon [Commun. Math. Phys. 88, 133 (1983)].

1.
Bach
,
V.
, “
Error bound for the Hartree-Fock energy of atoms and molecules
,”
Commun. Math. Phys.
147
,
527
548
(
1992
).
2.
Bach
,
V.
,
Lieb
,
E. H.
,
Loss
,
M.
, and
Solovej
,
J. P.
, “
There are no unfilled shells in unrestricted Hartree-Fock theory
,”
Phys. Rev. Lett.
72
,
2981
2983
(
1994
).
3.
Conlon
,
J. G.
, “
Semi-classical limit theorems for Hartree-Fock theory
,”
Commun. Math. Phys.
88
,
133
150
(
1983
).
4.
Deleporte
,
A.
and
Lambert
,
G.
, “
Universality for free fermions and the local Weyl law for semiclassical Schrödinger operators
,”
J. Eur. Math. Soc.
(published online); arXiv:2109.02121.
5.
Dimassi
,
M.
and
Sjostrand
,
J.
,
Spectral Asymptotics in the Semi-Classical Limit
(
Cambridge University Press
,
1999
), Vol.
268
.
6.
Fournais
,
S.
,
Lewin
,
M.
, and
Solovej
,
J. P.
, “
The semi-classical limit of large fermionic systems
,”
Calculus Var. Partial Differ. Equations
57
,
105
(
2018
).
7.
Frank
,
R. L.
,
Hundertmark
,
D.
,
Jex
,
M.
, and
Nam
,
P. T.
, “
The Lieb-Thirring inequality revisited
,”
J. Eur. Math. Soc.
23
,
2583
2600
(
2021
).
8.
Frank
,
R. L.
,
Laptev
,
A.
, and
Weidl
,
T.
,
Schrödinger Operators: Eigenvalues and Lieb-Thirring Inequalities
,
Cambridge Studies in Advanced Mathematics Vol. 200
(
Cambridge University Press
,
Cambridge
,
2022
).
9.
Lenzmann
,
E.
and
Lewin
,
M.
, “
Minimizers for the Hartree-Fock-Bogoliubov theory of neutron stars and white dwarfs
,”
Duke Math. J.
152
,
257
315
(
2010
).
10.
Lewin
,
M.
, “
Geometric methods for nonlinear many-body quantum systems
,”
J. Funct. Anal.
260
,
3535
3595
(
2011
).
11.
Lewin
,
M.
and
Sabin
,
J.
, “
The Hartree equation for infinitely many particles I. Well-posedness theory
,”
Commun. Math. Phys.
334
,
117
170
(
2015
).
12.
Lewin
,
M.
and
Sabin
,
J.
, “
The Hartree and Vlasov equations at positive density
,”
Commun. Partial Differ. Equations
45
,
1702
1754
(
2020
).
13.
Lieb
,
E. H.
and
Loss
,
M.
,
Analysis
, 2nd ed.,
Graduate Studies in Mathematics Vol. 14
(
American Mathematical Society
,
Providence, RI
,
2001
).
14.
Lieb
,
E. H.
and
Simon
,
B.
, “
Thomas-Fermi theory revisited
,”
Phys. Rev. Lett.
31
,
681
(
1973
).
15.
Lieb
,
E. H.
and
Simon
,
B.
, “
The Thomas-Fermi theory of atoms, molecules and solids
,”
Adv. Math.
23
,
22
116
(
1977
).
16.
Lieb
,
E. H.
and
Thirring
,
W. E.
, “
Bound for the kinetic energy of fermions which proves the stability of matter
,”
Phys. Rev. Lett.
35
,
1116
(
1975
).
17.
Lieb
,
E. H.
and
Thirring
,
W. E.
, “
Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities
,” in
Studies in Mathematical Physics
(
Springer
,
1976
), pp.
269
303
.
18.
Lions
,
P.-L.
, “
Solutions of Hartree-Fock equations for Coulomb systems
,”
Commun. Math. Phys.
109
,
33
97
(
1987
).
19.
Olver
,
F.
and
Peters
,
A. K.
,
Asymptotics and Special Functions
(
CRC Press
,
1997
).
20.
Simon
,
B.
,
Functional Integration and Quantum Physics
, 2nd ed. (
AMS Chelsea Publishing
,
Providence, RI
,
2005
).
21.
Wigner
,
E.
, “
On the quantum correction for thermodynamic equilibrium
,”
Phys. Rev.
40
,
749
(
1932
).
22.
Zworski
,
M.
,
Semiclassical Analysis
(
American Mathematical Society
,
2012
), Vol.
138
.
You do not currently have access to this content.