A general structure-preserving method is proposed for a class of Marcus stochastic Hamiltonian systems driven by additive Lévy noise. The convergence of the symplectic Euler scheme for this systems is investigated by Generalized Milstein Theorem. Realizable numerical implementation of this scheme is also provided in details. Numerical experiments are presented to illustrate the effectiveness and superiority of the proposed scheme. Applications of the method to solve two mathematical physical problems are provided.

1.
P.
Wei
,
Y.
Chao
, and
J.
Duan
, “
Hamiltonian systems with Lévy noise: Symplecticity, Hamilton’s principle and averaging principle
,”
Physica D
398
,
69
83
(
2019
).
2.
K.
Feng
and
M.
Qin
,
Symplectic Geometric Algorithms for Hamiltonian Systems
(
Springer
,
2010
).
3.
E.
Hairer
,
C.
Lubich
, and
G.
Wanner
,
Geometric Numerical Integration
(
Springer
,
2002
).
4.
L.
Wang
,
J.
Hong
,
R.
Scherer
et al, “
Dynamics and variational integrators of stochastic Hamiltonian systems
,”
Int. J. Numer. Anal. Model.
6
,
586
602
(
2009
).
5.
D.
Applebaum
,
Lévy Process and Stochastic Calculus
, 2nd ed. (
Cambridge University Press
,
2004
).
6.
Z.
Brzezniak
and
U.
Manna
, “
Weak solutions of a stochastic Landau–Lifshitz–Gilbert equation driven by pure jump noise
,”
Commun. Math. Phys.
371
,
1071
1129
(
2019
).
7.
J.
Duan
,
An Introduction to Stochastic Dynamics
(
Cambridge University Press
,
2015
).
8.
G. A.
Gottwald
and
I.
Melbourne
, “
Simulation of non-Lipschitz stochastic differential equations driven by α-stable noise: A method based on deterministic homogenisation
,”
SIAM Multiscale Model. Simul.
19
(
2
),
665
687
(
2021
).
9.
K.
Burrage
and
P. M.
Burrage
, “
Low rank Runge–Kutta methods, symplecticity and stochastic Hamiltonian problems with additive noise
,”
J. Comput. Appl. Math.
236
,
3920
3930
(
2012
).
10.
J.
Hong
and
L.
Sun
,
Symplectic Integration of Stochastic Hamiltonian Systems, Lecture Notes In Mathematics
(
Springer
,
2022
), Vol.
2314
.
11.
G.
Milstein
and
M.
Tretyakov
,
Stochastic Numerics for Mathematical Physics
(
Springer
,
2004
).
12.
M.
Senosiain
and
A.
Tocin
, “
On the numerical integration of the undamped harmonic oscillator driven by independent additive Gaussian white noises
,”
Appl. Numerical Math.
137
,
49
61
(
2019
).
13.
Q.
Zhan
,
J.
Duan
,
X.
Li
, and
Y.
Li
, “
Symplectic numerical integration for Hamiltonian stochastic differential equations with multiplicative Lévy noise in the sense of Marcus
,”
Math. Comput. Simul.
215
,
420
439
(
2024
).
14.
A.
Ferreiro-Castilla
,
A. E.
Kyprianou
, and
R.
Scheichl
, “
An Euler–Poisson scheme for Lévy driven stochastic differential equations
,”
J. Appl. Probab.
53
,
262
278
(
2016
).
15.
D.
Gillespie
, “
Approximate accelerated stochastic simulation of chemically reacting systems
,”
J. Chem. Phys.
115
,
1716
1733
(
2001
).
16.
C.
Curry
et al, “
Algebraic structures and stochastic differential equations driven by Lévy processes
,”
Proc. R. Soc. A
475
,
20180567
(
2019
).
17.
G.
Milstein
,
Y.
Repin
, and
M.
Tretyakov
, “
Symplectic integration of Hamiltonian systems with additive noise
,”
SIAM J. Numer. Anal.
39
,
2066
2088
(
2002
).
18.
N.
Bou-Rabee
and
H.
Owhadi
, “
Stochastic variational integrators
,”
IMA J. Numer. Anal.
29
,
421
443
(
2008
).
19.
S. S.
Dragomir
, “
The Gronwall Type Lemmas and Applications
,” in
Monographii Matematice
(
Univ. Timisoara
,
1987
), No.
29
.
20.
B.
Oksendal
and
A.
Sulem
,
Applied Stochastic Control of Jump Diffusions
(
Springer
,
2006
).
21.
X.
Sun
,
X.
Li
, and
Y.
Zheng
, “
Governing equations for probability densities of Marcus stochastic differential equations with Lévy noise
,”
Stochastics Dyn.
17
,
1750033
(
2017
).
22.
T.
Li
,
B.
Min
, and
Z.
Wang
, “
Marcus canonical integral for non-Gaussian processes and its computation: Pathwise simulation and tau-leaping algorithm
,”
J. Chem. Phys.
138
,
1044118
(
2013
).
You do not currently have access to this content.