Lévy noise is a broader type of white noise, which describes discontinuous noise and is more closely to simulate the realistic environment. In this paper, we introduce Lévy noise into the Cucker–Smale model to investigate its effect on the flocking dynamics of the system. The well-posedness of the system is guaranteed by defining an appropriate stopping time and constructing a Lyapunov function. Through the strong law of large numbers for martingales, a sufficient framework of the strong stochastic flocking is obtained without the strict assumption that the communication rate function has a positive lower bound due to the introduction of Lévy noise. We find that Lévy noise can accelerate flocking and become good noise in some cases. Finally, several numerical simulations are presented to validate our results and further observe effects of Lévy noise.

1.
C. W.
Reynolds
, “
Flocks, herds and schools: A distributed behavioral model
,”
ACM SIGGRAPH Comput. Graphics
21
,
25
34
(
1987
).
2.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
et al, “
Novel type of phase transition in a system of self-driven particles
,”
Phys. Rev. Lett.
75
,
1226
(
1995
).
3.
Y.
Kuramoto
, “
Self-entrainment of a population of coupled non-linear oscillators
,”
Int. Symp. Math. Probl. Theor. Phys.
39
,
420
422
(
1975
).
4.
F.
Cucker
and
S.
Smale
, “
Emergent behavior in flocks
,”
IEEE Trans. Autom. Control
52
,
852
862
(
2007
).
5.
F.
Cucker
and
S.
Smale
, “
On the mathematics of emergence
,”
Jpn. J. Math.
2
,
197
227
(
2007
).
6.
S. Y.
Ha
and
J. G.
Liu
, “
A simple proof of the Cucker–Smale flocking dynamics and mean-field limit
,”
Commun. Math. Sci.
7
,
297
325
(
2009
).
7.
S.
Motsch
and
E.
Tadmor
, “
A new model for self-organized dynamics and its flocking behavior
,”
J. Stat. Phys.
144
,
923
947
(
2011
).
8.
F.
Cucker
and
J. G.
Dong
, “
Avoiding collisions in flocks
,”
IEEE Trans. Autom. Control
55
,
1238
1243
(
2010
).
9.
Y.
Liu
and
J.
Wu
, “
Flocking and asymptotic velocity of the Cucker–Smale model with processing delay
,”
J. Math. Anal. Appl.
415
,
53
61
(
2014
).
10.
J. G.
Dong
and
L.
Qiu
, “
Flocking of the Cucker–Smale model on general digraphs
,”
IEEE Trans. Autom. Control
62
,
5234
5239
(
2017
).
11.
S.-H.
Choi
,
D.
Kwon
, and
H.
Seo
, “
Cucker–Smale type flocking models on a sphere
,”
J. Math. Phys.
65
,
042701
(
2024
).
12.
C.
Wu
and
J.-G.
Dong
, “
Discrete thermodynamic Cucker–Smale model with time-delay on a general digraph
,”
J. Math. Phys.
64
,
042707
(
2023
).
13.
H.
Ahn
,
S.-Y.
Ha
, and
W.
Shim
, “
Emergent behaviors of the discrete thermodynamic Cucker–Smale model on complete Riemannian manifolds
,”
J. Math. Phys.
62
,
122701
(
2021
).
14.
F.
Cucker
and
E.
Mordecki
, “
Flocking in noisy environments
,”
J. Math. Pures Appl.
89
,
278
296
(
2008
).
15.
S. Y.
Ha
,
K.
Lee
, and
D.
Levy
, “
Emergence of time-asymptotic flocking in a stochastic Cucker–Smale system
,”
Commun. Math. Sci.
7
,
453
469
(
2009
).
16.
S. M.
Ahn
and
S.
Ha
, “
Stochastic flocking dynamics of the Cucker–Smale model with multiplicative white noises
,”
J. Math. Phys.
51
,
103301
(
2010
).
17.
T.
Ton
,
N. T. H.
Linh
, and
A.
Yagi
, “
Flocking and non-flocking behavior in a stochastic Cucker–Smale system
,”
Anal. Appl.
12
,
63
73
(
2014
).
18.
Y. Z.
Sun
,
Y. J.
Wang
, and
D. H.
Zhao
, “
Flocking of multi-agent systems with multiplicative and independent measurement noises
,”
Physica A
440
,
81
89
(
2015
).
19.
R.
Erban
,
J.
Haskovec
, and
Y. Z.
Sun
, “
A Cucker–Smale model with noise and delay
,”
SIAM J. Appl. Math.
76
,
1535
1557
(
2016
).
20.
Q.
Huang
and
X.
Zhang
, “
On the stochastic singular Cucker–Smale model: Well-posedness, collision-avoidance and flocking
,”
Math. Models Methods Appl. Sci.
32
,
43
99
(
2022
).
21.
H.
Kunita
, “
Itô’s stochastic calculus: Its surprising power for applications
,”
Stoch. Process. Appl.
120
,
622
652
(
2010
).
22.
T.
Cui
,
A.
Din
,
P.
Liu
, and
A.
Khan
, “
Impact of Levy noise on a stochastic Norovirus epidemic model with information intervention
,”
Comput. Methods Biomech. Biomed. Eng.
26
,
1086
1099
(
2023
).
23.
Y.
Cheng
,
M.
Li
, and
F.
Zhang
, “
A dynamics stochastic model with HIV infection of CD4+ T-cells driven by Lévy noise
,”
Chaos, Solitons Fractals
129
,
62
70
(
2019
).
24.
J.
Bao
,
X.
Mao
et al, “
Competitive Lotka–Volterra population dynamics with jumps
,”
Nonlinear Anal.: Theory Methods Appl.
74
,
6601
6616
(
2011
).
25.
G.
Shen
,
W.
Xu
, and
J. L.
Wu
, “
An averaging principle for stochastic differential delay equations driven by time-changed Lévy noise
,”
Acta Math. Sci.
42
,
540
550
(
2022
).
26.
X.
Mao
and
M. J.
Rassias
, “
Khasminskii-type theorems for stochastic differential delay equations
,”
Stoch. Anal. Appl.
23
,
1045
1069
(
2005
).
27.
X.
Mao
,
G.
Marion
, and
E.
Renshaw
, “
Environmental Brownian noise suppresses explosions in population dynamics
,”
Stoch. Process. Appl.
97
,
95
110
(
2002
).
28.
D.
Applebaum
,
Lévy Processes and Stochastic Calculus
(
Cambridge University Press
,
2009
).
29.
X.
Mao
,
Stochastic Differential Equations
(
Horwood
,
New York
,
1997
).
You do not currently have access to this content.