In this paper, we investigate the emergent behaviors of the relativistic Cucker–Smale (RCS) model equipped with adaptive couplings. To do this, we first divide adaptive couplings into two types, Hebbian or anti-Hebbian. For the Hebbian case, we demonstrate the asymptotic flocking of the RCS model in two ways based on the Lyapunov functional approach and continuous argument. Meanwhile, for the anti-Hebbian case, depending on the regularity of the adaptive law at the origin, we prove the various emergent behaviors such as the slow velocity alignment or the group formation.
REFERENCES
1.
S.-Y.
Ha
, J.
Kim
, and T.
Ruggeri
, “From the relativistic mixture of gases to the relativistic Cucker–Smale flocking
,” Arch. Ration. Mech. Anal.
235
, 1661
–1706
(2020
).2.
S.-Y.
Ha
and T.
Ruggeri
, “Emergent dynamics of a thermodynamically consistent particle model
,” Arch. Ration. Mech. Anal.
223
, 1397
–1425
(2017
).3.
H.
Ahn
, S.-Y.
Ha
, and J.
Kim
, “Uniform stability of the relativistic Cucker–Smale model and its application to a mean-field limit
,” Commun. Pure Appl. Anal.
20
, 4209
–4237
(2021
).4.
H.
Ahn
, S.-Y.
Ha
, M.
Kang
, and W.
Shim
, “Emergent behaviors of relativistic flocks on Riemannian manifolds
,” Physica D
427
, 133011
(2021
).5.
H.
Ahn
, “Asymptotic flocking of the relativistic Cucker–Smale model with time delay
,” Networks Heterog. Media
18
, 29
–47
(2022
).6.
J.
Byeon
, S.-Y.
Ha
, and J.
Kim
, “Asymptotic flocking dynamics of a relativistic Cucker–Smale flock under singular communications
,” J. Math. Phys.
63
, 012702
(2022
).7.
H.
Ahn
, S.-Y.
Ha
, and J.
Kim
, “Nonrelativistic limits of the relativistic Cucker–Smale model and its kinetic counterpart
,” J. Math. Phys.
63
, 082701
(2022
).8.
S.-Y.
Ha
, J.
Kim
, and T.
Ruggeri
, “Kinetic and hydrodynamic models for the relativistic Cucker–Smale ensemble and emergent behaviors
,” Commun. Math. Sci.
19
, 1945
–1990
(2021
).9.
J. A.
Carrillo
, M.
Fornasier
, J.
Rosado
, and G.
Toscani
, “Asymptotic flocking dynamics for the kinetic Cucker–Smale model
,” SIAM. J. Math. Anal.
42
, 218
–236
(2010
).10.
P.
Cattiaux
, F.
Delebecque
, and L.
Pedeches
, “Stochastic Cucker–Smale models: Old and new
,” Ann. Appl. Probab.
28
, 3239
–3286
(2018
).11.
Y.-P.
Choi
and Z.
Li
, “Emergent behavior of Cucker–Smale flocking particles with heterogeneous time delays
,” Appl. Math. Lett.
86
, 49
–56
(2018
).12.
F.
Cucker
and J.-G.
Dong
, “A general collision-avoiding flocking framework
,” IEEE Trans. Autom. Control
56
, 1124
–1129
(2011
).13.
F.
Cucker
and S.
Smale
, “Emergent behavior in flocks
,” IEEE Trans. Autom. Control
52
, 852
–862
(2007
).14.
J.-G.
Dong
and L.
Qiu
, “Flocking of the Cucker–Smale model on general digraphs
,” IEEE Trans. Autom. Control
62
, 5234
–5239
(2017
).15.
A.
Figalli
and M.
Kang
, “A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment
,” Anal. PDE
12
, 843
–866
(2019
).16.
S.-Y.
Ha
, D.
Kim
, and F. W.
Schlöder
, “Emergent behaviors of Cucker–Smale flocks on Riemannian manifolds
,” IEEE Trans. Autom. Control
66
, 3020
–3035
(2021
).17.
S.-Y.
Ha
and E.
Tadmor
, “From particle to kinetic and hydrodynamic descriptions of flocking
,” Kinet. Relat. Models
1
, 415
–435
(2008
).18.
T. K.
Karper
, A.
Mellet
, and K.
Trivisa
, “Hydrodynamic limit of the kinetic Cucker–Smale flocking model
,” Math. Models Methods Appl. Sci.
25
, 131
–163
(2015
).19.
T. K.
Karper
, A.
Mellet
, and K.
Trivisa
, “On strong local alignment in the kinetic Cucker–Smale model
,” in Hyperbolic Conservation Laws and Related Analysis with Applications
, Springer Proceedings in Mathematics and Statistics Vol. 49
(Springer
, 2014
), pp. 227
–242
.20.
T. K.
Karper
, A.
Mellet
, and K.
Trivisa
, “Existence of weak solutions to kinetic flocking models
,” SIAM J. Math. Anal.
45
, 215
–243
(2013
).21.
Z.
Li
and X.
Xue
, “Cucker–Smale flocking under rooted leadership with fixed and switching topologies
,” SIAM J. Appl. Math.
70
, 3156
–3174
(2010
).22.
P. B.
Mucha
and J.
Peszek
, “The Cucker–Smale equation: Singular communication weight, measure-valued solutions and weak-atomic uniqueness
,” Arch. Ration. Mech. Anal.
227
, 273
–308
(2018
).23.
C.
Pignotti
and I. R.
Vallejo
, “Flocking estimates for the Cucker–Smale model with time lag and hierarchical leadership
,” J. Math. Anal. Appl.
464
, 1313
–1332
(2018
).24.
J.
Shen
, “Cucker–Smale flocking under hierarchical leadership
,” SIAM J. Appl. Math.
68
, 694
–719
, 2008
, 25.
D. O.
Hebb
, The Organization of Behavior
(Wiley and Sons
, New York
, 1949
).26.
S.-Y.
Ha
, D.
Kim
, and J.
Park
, “Fast and slow velocity alignments in a Cucker-Smale ensemble with adaptive couplings
,” Commun. Pure Appl. Anal.
19
, 4621
–4654
(2020
).27.
B. G.
Pachpatte
, Inequalities for Differential and Integral Equations
(Academic Press
, San Diego
, 1998
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.