In this paper, we investigate the emergent behaviors of the relativistic Cucker–Smale (RCS) model equipped with adaptive couplings. To do this, we first divide adaptive couplings into two types, Hebbian or anti-Hebbian. For the Hebbian case, we demonstrate the asymptotic flocking of the RCS model in two ways based on the Lyapunov functional approach and continuous argument. Meanwhile, for the anti-Hebbian case, depending on the regularity of the adaptive law at the origin, we prove the various emergent behaviors such as the slow velocity alignment or the group formation.

1.
S.-Y.
Ha
,
J.
Kim
, and
T.
Ruggeri
, “
From the relativistic mixture of gases to the relativistic Cucker–Smale flocking
,”
Arch. Ration. Mech. Anal.
235
,
1661
1706
(
2020
).
2.
S.-Y.
Ha
and
T.
Ruggeri
, “
Emergent dynamics of a thermodynamically consistent particle model
,”
Arch. Ration. Mech. Anal.
223
,
1397
1425
(
2017
).
3.
H.
Ahn
,
S.-Y.
Ha
, and
J.
Kim
, “
Uniform stability of the relativistic Cucker–Smale model and its application to a mean-field limit
,”
Commun. Pure Appl. Anal.
20
,
4209
4237
(
2021
).
4.
H.
Ahn
,
S.-Y.
Ha
,
M.
Kang
, and
W.
Shim
, “
Emergent behaviors of relativistic flocks on Riemannian manifolds
,”
Physica D
427
,
133011
(
2021
).
5.
H.
Ahn
, “
Asymptotic flocking of the relativistic Cucker–Smale model with time delay
,”
Networks Heterog. Media
18
,
29
47
(
2022
).
6.
J.
Byeon
,
S.-Y.
Ha
, and
J.
Kim
, “
Asymptotic flocking dynamics of a relativistic Cucker–Smale flock under singular communications
,”
J. Math. Phys.
63
,
012702
(
2022
).
7.
H.
Ahn
,
S.-Y.
Ha
, and
J.
Kim
, “
Nonrelativistic limits of the relativistic Cucker–Smale model and its kinetic counterpart
,”
J. Math. Phys.
63
,
082701
(
2022
).
8.
S.-Y.
Ha
,
J.
Kim
, and
T.
Ruggeri
, “
Kinetic and hydrodynamic models for the relativistic Cucker–Smale ensemble and emergent behaviors
,”
Commun. Math. Sci.
19
,
1945
1990
(
2021
).
9.
J. A.
Carrillo
,
M.
Fornasier
,
J.
Rosado
, and
G.
Toscani
, “
Asymptotic flocking dynamics for the kinetic Cucker–Smale model
,”
SIAM. J. Math. Anal.
42
,
218
236
(
2010
).
10.
P.
Cattiaux
,
F.
Delebecque
, and
L.
Pedeches
, “
Stochastic Cucker–Smale models: Old and new
,”
Ann. Appl. Probab.
28
,
3239
3286
(
2018
).
11.
Y.-P.
Choi
and
Z.
Li
, “
Emergent behavior of Cucker–Smale flocking particles with heterogeneous time delays
,”
Appl. Math. Lett.
86
,
49
56
(
2018
).
12.
F.
Cucker
and
J.-G.
Dong
, “
A general collision-avoiding flocking framework
,”
IEEE Trans. Autom. Control
56
,
1124
1129
(
2011
).
13.
F.
Cucker
and
S.
Smale
, “
Emergent behavior in flocks
,”
IEEE Trans. Autom. Control
52
,
852
862
(
2007
).
14.
J.-G.
Dong
and
L.
Qiu
, “
Flocking of the Cucker–Smale model on general digraphs
,”
IEEE Trans. Autom. Control
62
,
5234
5239
(
2017
).
15.
A.
Figalli
and
M.
Kang
, “
A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment
,”
Anal. PDE
12
,
843
866
(
2019
).
16.
S.-Y.
Ha
,
D.
Kim
, and
F. W.
Schlöder
, “
Emergent behaviors of Cucker–Smale flocks on Riemannian manifolds
,”
IEEE Trans. Autom. Control
66
,
3020
3035
(
2021
).
17.
S.-Y.
Ha
and
E.
Tadmor
, “
From particle to kinetic and hydrodynamic descriptions of flocking
,”
Kinet. Relat. Models
1
,
415
435
(
2008
).
18.
T. K.
Karper
,
A.
Mellet
, and
K.
Trivisa
, “
Hydrodynamic limit of the kinetic Cucker–Smale flocking model
,”
Math. Models Methods Appl. Sci.
25
,
131
163
(
2015
).
19.
T. K.
Karper
,
A.
Mellet
, and
K.
Trivisa
, “
On strong local alignment in the kinetic Cucker–Smale model
,” in
Hyperbolic Conservation Laws and Related Analysis with Applications
,
Springer Proceedings in Mathematics and Statistics Vol. 49
(
Springer
,
2014
), pp.
227
242
.
20.
T. K.
Karper
,
A.
Mellet
, and
K.
Trivisa
, “
Existence of weak solutions to kinetic flocking models
,”
SIAM J. Math. Anal.
45
,
215
243
(
2013
).
21.
Z.
Li
and
X.
Xue
, “
Cucker–Smale flocking under rooted leadership with fixed and switching topologies
,”
SIAM J. Appl. Math.
70
,
3156
3174
(
2010
).
22.
P. B.
Mucha
and
J.
Peszek
, “
The Cucker–Smale equation: Singular communication weight, measure-valued solutions and weak-atomic uniqueness
,”
Arch. Ration. Mech. Anal.
227
,
273
308
(
2018
).
23.
C.
Pignotti
and
I. R.
Vallejo
, “
Flocking estimates for the Cucker–Smale model with time lag and hierarchical leadership
,”
J. Math. Anal. Appl.
464
,
1313
1332
(
2018
).
24.
J.
Shen
, “
Cucker–Smale flocking under hierarchical leadership
,”
SIAM J. Appl. Math.
68
,
694
719
,
2008
,
25.
D. O.
Hebb
,
The Organization of Behavior
(
Wiley and Sons
,
New York
,
1949
).
26.
S.-Y.
Ha
,
D.
Kim
, and
J.
Park
, “
Fast and slow velocity alignments in a Cucker-Smale ensemble with adaptive couplings
,”
Commun. Pure Appl. Anal.
19
,
4621
4654
(
2020
).
27.
B. G.
Pachpatte
,
Inequalities for Differential and Integral Equations
(
Academic Press
,
San Diego
,
1998
).
You do not currently have access to this content.