I rigorously prove the existence of a nontrivial fixed point of a family of continuous renormalization group flows corresponding to certain weakly interacting Fermionic quantum field theories with a parameter in the propagator allowing the scaling dimension to be tuned in a manner analogous to dimensional regularization.
REFERENCES
1.
J.
Polchinski
, “Renormalization and effective Lagrangians
,” Nucl. Phys. B
231
, 269
–295
(1984
).2.
K. G.
Wilson
, “Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture
,” Phys. Rev. B
4
, 3174
(1971
).3.
D. S.
Fisher
, “Critical behavior of random transverse-field Ising spin chains
,” Phys. Rev. B
51
, 6411
(1995
).4.
G.
Giacomin
and R. L.
Greenblatt
, “Lyapunov exponent for products of random Ising transfer matrices: The balanced disorder case
,” ALEA
19
, 701
–728
(2022
).5.
F.
Comets
, G.
Giacomin
, and R. L.
Greenblatt
, “Continuum limit of random matrix products in statistical mechanics of disordered systems
,” Commun. Math. Phys.
369
, 171
–219
(2019
).6.
A.
Giuliani
, V.
Mastropietro
, and S.
Rychkov
, “Gentle introduction to rigorous renormalization group: A worked fermionic example
,” J. High Energy Phys.
2021
, 26
.7.
K.
Gawȩdski
and A.
Kupiainen
, “Renormalization of a non-renormalizable quantum field theory
,” Nucl. Phys. B
262
, 33
–48
(1985
).8.
G.
Antinucci
, A.
Giuliani
, and R. L.
Greenblatt
, “Energy correlations of non-integrable ising models: The scaling limit in the cylinder
,” Commun. Math. Phys.
397
, 393
–483
(2023
).9.
G.
Antinucci
, A.
Giuliani
, and R. L.
Greenblatt
, “Non-integrable Ising models in cylindrical geometry: Grassmann representation and infinite volume limit
,” Ann. Henri Poincaré
23
, 1061
–1139
(2022
).10.
P.
Duch
, “Construction of Gross-Neveu model using Polchinski flow equation
,” arXiv:2403.18562v1 [math-ph] (2024
).11.
M.
Disertori
and V.
Rivasseau
, “Continuous constructive fermionic renormalization
,” Ann. Henri Poincaré
1
, 1
–57
(2000
).12.
M.
Disertori
and V.
Rivasseau
, “Rigorous proof of Fermi liquid behavior for jellium two-dimensional interacting fermions
,” Phys. Rev. Lett.
85
, 361
(2000
).13.
M.
Disertori
and V.
Rivasseau
, “Interacting Fermi liquid in two dimensions at finite temperature. Part I: Convergent attributions
,” Commun. Math. Phys.
215
, 251
–290
(2000
).14.
M.
Disertori
and V.
Rivasseau
, “Interacting Fermi liquid in two dimensions at finite temperature. Part II: Renormalization
,” Commun. Math. Phys.
215
, 291
–341
(2000
).15.
W.
Kroschinsky
, D. H. U.
Marchetti
, and M.
Salmhofer
, “The majorant method for the fermionic effective action
,” arXiv:2404.06099v1 [math-ph], (2024
).16.
D. C.
Brydges
and T.
Kennedy
, “Mayer expansions and the Hamilton-Jacobi equation
,” J. Stat. Phys.
48
, 19
–49
(1987
).17.
D.
Brydges
and J.
Wright
, “Mayer expansions and the Hamilton-Jacobi equation. II. Fermions, dimensional reduction formulas
,” J. Stat. Phys.
51
, 435
–456
(1988
).18.
J.
Wright
and D.
Brydges
, “Erratum: Mayer expansions and the Hamiltonian-Jacobi equation. II. Fermions, dimensional reduction formulas
,” J. Stat. Phys.
97
, 1027
(1999
).19.
G.
Benfatto
and V.
Mastropietro
, “Renormalization group, hidden symmetries and approximate ward identities in the XYZ model
,” Rev. Math. Phys.
13
, 1323
–1435
(2001
).20.
A.
Giuliani
, V.
Mastropietro
, S.
Rychkov
, and G.
Scola
, “Non-trivial fixed point of a fermionic theory, II. Anomalous exponent and scaling operators
,” arXiv:2404.14904v1 [math-ph] (2024
).21.
A.
Abdesselam
and V.
Rivasseau
, “Trees, forests and jungles: A botanical garden for cluster expansions
,” in Constructive Physics Results in Field Theory, Statistical Mechanics and Condensed Matter Physics
, edited by V.
Rivasseau
(Springer
, 1995
), pp. 7
–36
.22.
A. M.
Frassino
and O.
Panella
, “Quantization of nonlocal fractional field theories via the extension problem
,” Phys. Rev. D
100
, 116008
(2019
).23.
G.
Felder
, “Construction of a non-trivial planar field theory with ultraviolet stable fixed point
,” Commun. Math. Phys.
102
, 139
–155
(1985
).24.
R. L.
Greenblatt
, “Discrete and zeta-regularized determinants of the Laplacian on polygonal domains with Dirichlet boundary conditions
,” J. Math. Phys.
64
, 043301
(2023
).25.
K. G.
Wilson
and J.
Kogut
, “The renormalization group and the expansion
,” Phys. Rep.
12
, 75
–199
(1974
).26.
M.
Reed
and B.
Simon
, Methods of Modern Mathematical Physics I: Functional Analysis
, Revised and enlarged ed. (Academic Press
, 1980
).27.
J.
Glimm
and A.
Jaffe
, in Quantum Physics: A Functional Integral Point of View
, 2nd ed. (Springer
, 1987
).28.
A.
Gimenez-Grau
, Y.
Nakayama
, and S.
Rychkov
, “Scale without conformal invariance in dipolar ferromagnets
,” Phys. Rev. B
110
, 024421
(2024
).29.
Y.
Nakayama
, “Functional renormalization group approach to dipolar fixed point which is scale invariant but nonconformal
,” Phys. Rev. D
110
, 025020
(2024
).30.
L.
Schafer
, “Conformal covariance in the framework of Wilson’s renormalization group approach
,” J. Phys. A: Math. Gen.
9
, 377
(1976
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.