I rigorously prove the existence of a nontrivial fixed point of a family of continuous renormalization group flows corresponding to certain weakly interacting Fermionic quantum field theories with a parameter in the propagator allowing the scaling dimension to be tuned in a manner analogous to dimensional regularization.

1.
J.
Polchinski
, “
Renormalization and effective Lagrangians
,”
Nucl. Phys. B
231
,
269
295
(
1984
).
2.
K. G.
Wilson
, “
Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture
,”
Phys. Rev. B
4
,
3174
(
1971
).
3.
D. S.
Fisher
, “
Critical behavior of random transverse-field Ising spin chains
,”
Phys. Rev. B
51
,
6411
(
1995
).
4.
G.
Giacomin
and
R. L.
Greenblatt
, “
Lyapunov exponent for products of random Ising transfer matrices: The balanced disorder case
,”
ALEA
19
,
701
728
(
2022
).
5.
F.
Comets
,
G.
Giacomin
, and
R. L.
Greenblatt
, “
Continuum limit of random matrix products in statistical mechanics of disordered systems
,”
Commun. Math. Phys.
369
,
171
219
(
2019
).
6.
A.
Giuliani
,
V.
Mastropietro
, and
S.
Rychkov
, “
Gentle introduction to rigorous renormalization group: A worked fermionic example
,”
J. High Energy Phys.
2021
,
26
.
7.
K.
Gawȩdski
and
A.
Kupiainen
, “
Renormalization of a non-renormalizable quantum field theory
,”
Nucl. Phys. B
262
,
33
48
(
1985
).
8.
G.
Antinucci
,
A.
Giuliani
, and
R. L.
Greenblatt
, “
Energy correlations of non-integrable ising models: The scaling limit in the cylinder
,”
Commun. Math. Phys.
397
,
393
483
(
2023
).
9.
G.
Antinucci
,
A.
Giuliani
, and
R. L.
Greenblatt
, “
Non-integrable Ising models in cylindrical geometry: Grassmann representation and infinite volume limit
,”
Ann. Henri Poincaré
23
,
1061
1139
(
2022
).
10.
P.
Duch
, “
Construction of Gross-Neveu model using Polchinski flow equation
,” arXiv:2403.18562v1 [math-ph] (
2024
).
11.
M.
Disertori
and
V.
Rivasseau
, “
Continuous constructive fermionic renormalization
,”
Ann. Henri Poincaré
1
,
1
57
(
2000
).
12.
M.
Disertori
and
V.
Rivasseau
, “
Rigorous proof of Fermi liquid behavior for jellium two-dimensional interacting fermions
,”
Phys. Rev. Lett.
85
,
361
(
2000
).
13.
M.
Disertori
and
V.
Rivasseau
, “
Interacting Fermi liquid in two dimensions at finite temperature. Part I: Convergent attributions
,”
Commun. Math. Phys.
215
,
251
290
(
2000
).
14.
M.
Disertori
and
V.
Rivasseau
, “
Interacting Fermi liquid in two dimensions at finite temperature. Part II: Renormalization
,”
Commun. Math. Phys.
215
,
291
341
(
2000
).
15.
W.
Kroschinsky
,
D. H. U.
Marchetti
, and
M.
Salmhofer
, “
The majorant method for the fermionic effective action
,” arXiv:2404.06099v1 [math-ph], (
2024
).
16.
D. C.
Brydges
and
T.
Kennedy
, “
Mayer expansions and the Hamilton-Jacobi equation
,”
J. Stat. Phys.
48
,
19
49
(
1987
).
17.
D.
Brydges
and
J.
Wright
, “
Mayer expansions and the Hamilton-Jacobi equation. II. Fermions, dimensional reduction formulas
,”
J. Stat. Phys.
51
,
435
456
(
1988
).
18.
J.
Wright
and
D.
Brydges
, “
Erratum: Mayer expansions and the Hamiltonian-Jacobi equation. II. Fermions, dimensional reduction formulas
,”
J. Stat. Phys.
97
,
1027
(
1999
).
19.
G.
Benfatto
and
V.
Mastropietro
, “
Renormalization group, hidden symmetries and approximate ward identities in the XYZ model
,”
Rev. Math. Phys.
13
,
1323
1435
(
2001
).
20.
A.
Giuliani
,
V.
Mastropietro
,
S.
Rychkov
, and
G.
Scola
, “
Non-trivial fixed point of a ψd4 fermionic theory, II. Anomalous exponent and scaling operators
,” arXiv:2404.14904v1 [math-ph] (
2024
).
21.
A.
Abdesselam
and
V.
Rivasseau
, “
Trees, forests and jungles: A botanical garden for cluster expansions
,” in
Constructive Physics Results in Field Theory, Statistical Mechanics and Condensed Matter Physics
, edited by
V.
Rivasseau
(
Springer
,
1995
), pp.
7
36
.
22.
A. M.
Frassino
and
O.
Panella
, “
Quantization of nonlocal fractional field theories via the extension problem
,”
Phys. Rev. D
100
,
116008
(
2019
).
23.
G.
Felder
, “
Construction of a non-trivial planar field theory with ultraviolet stable fixed point
,”
Commun. Math. Phys.
102
,
139
155
(
1985
).
24.
R. L.
Greenblatt
, “
Discrete and zeta-regularized determinants of the Laplacian on polygonal domains with Dirichlet boundary conditions
,”
J. Math. Phys.
64
,
043301
(
2023
).
25.
K. G.
Wilson
and
J.
Kogut
, “
The renormalization group and the ϵ expansion
,”
Phys. Rep.
12
,
75
199
(
1974
).
26.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics I: Functional Analysis
, Revised and enlarged ed. (
Academic Press
,
1980
).
27.
J.
Glimm
and
A.
Jaffe
, in
Quantum Physics: A Functional Integral Point of View
, 2nd ed. (
Springer
,
1987
).
28.
A.
Gimenez-Grau
,
Y.
Nakayama
, and
S.
Rychkov
, “
Scale without conformal invariance in dipolar ferromagnets
,”
Phys. Rev. B
110
,
024421
(
2024
).
29.
Y.
Nakayama
, “
Functional renormalization group approach to dipolar fixed point which is scale invariant but nonconformal
,”
Phys. Rev. D
110
,
025020
(
2024
).
30.
L.
Schafer
, “
Conformal covariance in the framework of Wilson’s renormalization group approach
,”
J. Phys. A: Math. Gen.
9
,
377
(
1976
).
You do not currently have access to this content.