We describe the symmetry group of the stabilizer polytope for any number n of systems and any prime local dimension d. In the qubit case, the symmetry group coincides with the linear and anti-linear Clifford operations. In the case of qudits, the structure is somewhat richer: For n = 1, it is a wreath product of permutations of bases and permutations of the elements within each basis. For n > 1, the symmetries are given by affine symplectic similitudes. These are the affine maps that preserve the symplectic form of the underlying discrete phase space up to a non-zero multiplier. We phrase these results with respect to a number of a priori different notions of “symmetry,” including Kadison symmetries (bijections that are compatible with convex combinations), Wigner symmetries (bijections that preserve inner products), and symmetries realized by an action on Hilbert space. Going beyond stabilizer states, we extend an observation of Heinrich and Gross [Quantum 3, 132 (2019)] and show that the symmetries of fairly general sets of Hermitian operators are constrained by certain moments. In particular: the symmetries of a set that behaves like a 3-design preserve Jordan products and are therefore realized by conjugation with unitaries or anti-unitaries. (The structure constants of the Jordan algebra are encoded in an order-three tensor, which we connect to the third moments of a design). This generalizes Kadison’s formulation of the classic Wigner theorem on quantum mechanical symmetries.

1.
D.
Gottesman
, “
The Heisenberg representation of quantum computers
,” in
Group 22: Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics
, edited by
S. P.
Corney
,
R.
Delbourgo
, and
P. D.
Jarvis
(
International Press
,
Cambridge, MA
,
1999
), pp.
32
43
.
2.
S.
Aaronson
and
D.
Gottesman
, “
Improved simulation of stabilizer circuits
,”
Phys. Rev. A
70
,
052328
(
2004
).
3.
A.
Heimendahl
,
M.
Heinrich
, and
D.
Gross
, “
The axiomatic and the operational approaches to resource theories of magic do not coincide
,”
J. Math. Phys.
63
(
11
),
112201
(
2022
).
4.
J. R.
Seddon
and
E. T.
Campbell
, “
Quantifying magic for multi-qubit operations
,”
Proc. R. Soc. A
475
(
2227
),
20190251
(
2019
).
5.
J. R.
Seddon
,
B.
Regula
,
H.
Pashayan
,
Y.
Ouyang
, and
E. T.
Campbell
, “
Quantifying quantum speedups: Improved classical simulation from tighter magic monotones
,”
PRX Quantum
2
(
1
),
010345
(
2021
).
6.
S.
Virmani
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Classical simulability, entanglement breaking, and quantum computation thresholds
,”
Phys. Rev. A
71
(
4
),
042328
(
2005
).
7.
M.
Heinrich
and
D.
Gross
, “
Robustness of magic and symmetries of the stabiliser polytope
,”
Quantum
3
,
132
(
2019
).
8.
M.
Howard
and
E.
Campbell
, “
Application of a resource theory for magic states to fault-tolerant quantum computing
,”
Phys. Rev. Lett.
118
,
090501
(
2017
).
9.
D.
Gross
, “
Hudson’s theorem for finite-dimensional quantum systems
,”
J. Math. Phys.
47
(
12
),
122107
(
2006
).
10.
A.
Mari
and
J.
Eisert
, “
Positive Wigner functions render classical simulation of quantum computation efficient
,”
Phys. Rev. Lett.
109
(
23
),
230503
(
2012
).
11.
H.
Pashayan
,
S. D.
Bartlett
, and
D.
Gross
, “
From estimation of quantum probabilities to simulation of quantum circuits
,”
Quantum
4
,
223
(
2020
).
12.
V.
Veitch
,
C.
Ferrie
,
D.
Gross
, and
J.
Emerson
, “
Negative quasi-probability as a resource for quantum computation
,”
New J. Phys.
14
(
11
),
113011
(
2012
).
13.
V.
Veitch
,
S. A. H.
Mousavian
,
D.
Gottesman
, and
J.
Emerson
, “
The resource theory of stabilizer quantum computation
,”
New J. Phys.
16
(
1
),
013009
(
2014
).
14.
A.
Heimendahl
, “
The stabilizer polytope and contextuality for qubit systems
,” M.S. thesis,
University of Cologne
,
2019
.
15.
C.
Okay
,
M.
Zurel
, and
R.
Raussendorf
, “
On the extremal points of the Lambda polytopes and classical simulation of quantum computation with magic states
,”
Quantum Inf. Comput.
21
(
13–14
),
1091
(
2021
).
16.
R.
Raussendorf
,
J.
Bermejo-Vega
,
E.
Tyhurst
,
C.
Okay
, and
M.
Zurel
, “
Phase-space-simulation method for quantum computation with magic states on qubits
,”
Phys. Rev. A
101
(
1
),
012350
(
2020
).
17.
M.
Zurel
,
C.
Okay
, and
R.
Raussendorf
, “
Hidden variable model for universal quantum computation with magic states on qubits
,”
Phys. Rev. Lett.
125
(
26
),
260404
(
2020
).
18.
C.
Cormick
,
E. F.
Galvão
,
D.
Gottesman
,
J. P.
Paz
, and
A. O.
Pittenger
, “
Classicality in discrete Wigner functions
,”
Phys. Rev. A
73
,
012301
(
2006
).
19.
B.
Reichardt
, “
Quantum universality from magic states distillation applied to CSS codes
,”
Quantum Inf. Process.
4
,
251
264
(
2005
).
20.
M. A.
Nielsen
and
I. L.
Chuang
, in
Quantum Computation and Quantum Information
, 10th Anniversary Edition (
Cambridge University Press
,
2011
).
21.
D. M.
Appleby
, “
Symmetric informationally complete–positive operator valued measures and the extended Clifford group
,”
J. Math. Phys.
46
(
5
),
052107
(
2005
).
22.
D.
Gross
,
S.
Nezami
, and
M.
Walter
, “
Schur–Weyl duality for the Clifford group with applications: Property testing, a robust Hudson theorem, and de Finetti representations
,”
Commun. Math. Phys.
385
(
3
),
1325
1393
(
2021
).
23.
P.
Gérardin
, “
Weil representations associated to finite fields
,”
J. Algebra
46
(
1
),
54
101
(
1977
).
24.
M.
Neuhauser
, “
An explicit construction of the metaplectic representation over a finite field
,”
J. Lie Theory
12
(
1
),
15
30
(
2002
).
25.
O. T.
O’Meara
,
Symplectic Groups
,
Mathematical Surveys and Monographs
(
American Mathematical Society
,
1978
).
26.
A. K.
Hashagen
,
S. T.
Flammia
,
D.
Gross
, and
J. J.
Wallman
, “
Real randomized benchmarking
,”
Quantum
2
,
85
(
2018
).
27.
G.
Nebe
,
E. M.
Rains
, and
N. J. A.
Sloane
, “
The invariants of the Clifford groups
,”
Des., Codes Cryptography
24
(
1
),
99
122
(
2001
).
28.
G.
Cassinelli
,
E.
Vito
,
A.
Levrero
, and
P. J.
Lahti
,
The Theory of Symmetry Actions in Quantum Mechanics: With an Application to the Galilei Group
(
Springer
,
2004
), Vol.
654
.
29.
K.
Landsman
,
Foundations of Quantum Theory
(
Springer
,
2017
), Vol.
188
.
30.
V.
Bargmann
, “
Note on Wigner’s theorem on symmetry operations
,”
J. Math. Phys.
5
(
7
),
862
868
(
1964
).
31.
R.
Simon
,
N.
Mukunda
,
S.
Chaturvedi
, and
V.
Srinivasan
, “
Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics
,”
Phys. Lett. A
372
(
46
),
6847
6852
(
2008
).
32.
G. C.
Wick
,
On Symmetry Transformations
(
North-Holland
,
Amsterdam
,
1966
), pp.
231
239
.
33.
E.
Wigner
,
Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren
(
Springer
,
1931
).
34.
D. M.
Appleby
,
I.
Bengtsson
, and
H. B.
Dang
, “
Galois unitaries, mutually unbiased bases, and MUB-balanced states
,”
Quantum Inf. Comput.
15
,
1261
1294
(
2015
).
35.
I.
Bengtsson
and
K.
Zyczkowski
,
Geometry of Quantum States: An Introduction to Quantum Entanglement
(
Cambridge University Press
,
2006
).
36.
I.
Bengtsson
and
A.
Ericsson
, “
Mutually unbiased bases and the complementarity polytope
,”
Open Syst. Inf. Dyn.
12
,
107
(
2005
).
37.
H. B.
Dang
, “
Studies of symmetries that give special quantum states the ‘right to exist’
,” arXiv:1508.02703 (
2015
).
38.
S.
Gribling
and
S.
Polak
, “
Mutually unbiased bases: Polynomial optimization and symmetry
,”
Quantum
8
,
1318
(
2024
).
39.
D.
Gross
,
K.
Audenaert
, and
J.
Eisert
, “
Evenly distributed unitaries: On the structure of unitary designs
,”
J. Math. Phys.
48
,
052104
(
2007
).
40.
V.
Sidelnikov
, “
Spherical 7-designs in 2n-dimensional Euclidean space
,”
J. Algebraic Combinatorics
10
(
3
),
279
288
(
1999
).
41.
R.
Kueng
and
D.
Gross
, “
Qubit stabilizer states are complex projective 3-designs
,” arXiv:1510.02767 [quant-ph] (
2015
).
42.
Z.
Webb
, “
The Clifford group forms a unitary 3-design
,”
Quantum Inf. Comput.
16
(
15–16
),
1379
1400
(
2016
).
43.
H.
Zhu
, “
Multiqubit Clifford groups are unitary 3-designs
,”
Phys. Rev. A
96
(
6
),
062336
(
2017
).
44.
Z.-X.
Wan
,
Geometry of Matrices
(
World Scientific
,
1996
).
45.
J. M.
Landsberg
,
Tensors: Geometry and Applications: Geometry and Applications
(
American Mathematical Society
,
2011
).
46.
G. M.
Ziegler
,
Lectures on Polytopes
,
Graduate Texts in Mathematics
(
Springer
,
New York
,
2012
).
47.
I.
Gleason
and
I.
Hubard
, “
Products of abstract polytopes
,”
J. Combinatorial Theory, Ser. A
157
,
287
320
(
2018
).
48.
G.
Nebe
,
E. M.
Rains
,
N. J. A.
Sloane
et al,
Self-Dual Codes and Invariant Theory
(
Springer
,
2006
), Vol.
17
.
49.
N.
Delfosse
,
C.
Okay
,
J.
Bermejo-Vega
,
D. E.
Browne
, and
R.
Raussendorf
, “
Equivalence between contextuality and negativity of the Wigner function for qudits
,”
New J. Phys.
19
(
12
),
123024
(
2017
).
50.
M. K.
Bennett
,
Affine and Projective Geometry
(
Wiley
,
2011
).
51.
S.
Gurevich
and
R.
Howe
, “
Small representations of finite classical groups
,” in
Representation Theory, Number Theory, and Invariant Theory
(
Springer
,
2017
), pp.
209
234
.
52.
F.
Montealegre-Mora
and
D.
Gross
, “
Rank-deficient representations in the theta correspondence over finite fields arise from quantum codes
,”
Represent. Theory
25
(
2021
),
193
223
(
2021
).
53.
E.
Bannai
and
E.
Bannai
, “
A survey on spherical designs and algebraic combinatorics on spheres
,”
Eur. J. Combinatorics
30
(
6
),
1392
1425
(
2009
).
54.
B. B.
Venkov
, “
Réseaux euclidiens, designs sphériques et formes modulaires
,”
Monogr. Enseign. Math.
37
,
10
86
(
2001
).
55.
A.
Heimendahl
,
A.
Marafioti
,
A.
Thiemeyer
,
F.
Vallentin
, and
M. C.
Zimmermann
, “
Critical even unimodular lattices in the Gaussian core model
,”
Int. Math. Res. Not.
2023
,
5352
.
56.
B.
Simon
,
Harmonic Analysis: A Comprehensive Course in Analysis, Part 3
(
American Mathematical Society
,
2015
).
You do not currently have access to this content.