Bigraded Toda hierarchy is generalized to , which is the analogue of the famous constrained KP hierarchy . It is known that different bosonizations of fermionic KP hierarchy will give rise to different kinds of integrable hierarchies. Starting from the fermionic form of constrained KP hierarchy, bilinear equation of this generalized bigraded Toda hierarchy (GBTH) are derived by using 2–component boson–fermion correspondence. Next based upon this, the Lax structure of GBTH is obtained. Conversely, we also derive bilinear equation of GBTH from the corresponding Lax structure.
REFERENCES
1.
E.
Date
, M.
Kashiwara
, M.
Jimbo
, and T.
Miwa
, “Transformation groups for soliton equations
,” in Nonlinear Integrable Systems–Classical Theory and Quantum Theory
(World Scientific
, Singapore
, 1983
), pp. 39
–119
.2.
M.
Jimbo
and T.
Miwa
, “Solitons and infinite dimensional Lie algebras
,” Publ. Res. Inst. Math. Sci.
19
, 943
–1001
(1983
).3.
M.
Mulase
, “Algebraic theory of the KP equations
,” in Perspectives in Mathematical Physics
(International Press
, Cambridge
, 1994
), pp. 151
–217
.4.
Y.
Ohta
, J.
Satsuma
, D.
Takahashi
, and T.
Tokihiro
, “An elementary introduction to Sato theory
,” Prog. Theor. Phys. Suppl.
94
, 210
–241
(1988
).5.
R.
Willox
and J.
Satsuma
, “Sato theory and transformation groups. A unified approach to integrable systems
,” in Discrete Integrable Systems
(Springer
, Berlin
, 2004
), pp. 17
–55
.6.
A.
Alexandrov
and A.
Zabrodin
, “Free fermions and tau–functions
,” J. Geom. Phys.
67
, 37
–80
(2013
).7.
V.
Kac
and J.
van de Leur
, “Multicomponent KP type hierarchies and their reductions, associated to conjugacy classes of Weyl groups of classical Lie algebras
,” J. Math. Phys.
64
, 091702
(2023
).8.
V.
Kac
and J.
van de Leur
, “The geometry of spinors and the multicomponent BKP and DKP hierarchies
,” in The Bispectral Problem
(American Mathematical Society
, Providence
, 1998
), pp. 159
–202
.9.
V.
Kac
and J.
van de Leur
, “The n–component KP hierarchy and representation theory
,” J. Math. Phys.
44
, 3245
–3293
(2003
).10.
T.
Miwa
, M.
Jimbo
, and E.
Date
, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras
(Cambridge University Press
, Cambridge
, 2000
).11.
K.
Takasaki
, “Toda hierarchies and their applications
,” J. Phys. A: Math. Theor.
51
, 203001
(2018
).12.
K.
Ueno
and K.
Takasaki
, “Toda lattice hierarchy
,” in Group Representations and Systems of Differential Equations
(Mathematical Society of Japan
, Japan
, 1984
), pp. 1
–95
.13.
Y.
Cheng
, “Constraints of the Kadomtsev–Petviashvili hierarchy
,” J. Math. Phys.
33
, 3774
–3782
(1992
).14.
Y.
Cheng
and Y. J.
Zhang
, “Bilinear equations for the constrained KP hierarchy
,” Inverse Probl.
10
, L11
–L17
(1994
).15.
G.
Carlet
, “The extended bigraded Toda hierarchy
,” J. Phys. A: Math. Gen.
39
, 9411
(2006
).16.
B.
Konopelchenko
and W.
Strampp
, “New reductions of the Kadomtsev–Petviashvili and two–dimensional Toda lattice hierarchies via symmetry constraints
,” J. Math. Phys.
33
, 3676
–3686
(1992
).17.
I.
Krichever
and A.
Zabrodin
, “Constrained Toda hierarchy and turning points of the Ruijsenaars–Schneider model
,” Lett. Math. Phys.
112
, 23
(2022
).18.
I.
Krichever
and A.
Zabrodin
, “Kadomtsev–Petviashvili turning points and CKP hierarchy
,” Commun. Math. Phys.
386
, 1643
–1683
(2021
).19.
A.
Zabrodin
, “Kadomtsev–Petviashvili hierarchies of types B and C
,” Theor. Math. Phys.
208
, 865
–885
(2021
).20.
I.
Krichever
and A.
Zabrodin
, “Toda lattice with constraint of type B
,” Physica D
453
, 133827
(2023
).21.
W. C.
Guan
, S.
Wang
, W. J.
Rui
, and J. P.
Cheng
, “Lax structure and tau function for large BKP hierarchy
,” Lett. Math. Phys.
(submitted); arXiv:2404.09815.22.
R.
Hirota
, The Direct Method in Soliton Theory
(Cambridge University Press
, Cambridge
, 2004
).23.
J.
van de Leur
and A. Y.
Orlov
, “Pfaffian and determinantal tau functions
,” Lett. Math. Phys.
105
, 1499
–1531
(2015
).24.
M.
Adler
and P.
van Moerbeke
, “Vertex operator solutions to the discrete KP-hierarchy
,” Commun. Math. Phys.
203
, 185
–210
(1999
).25.
W.
Oevel
, “Darboux transformations for integrable lattice systems
,” in Nonlinear Physics: Theory and Experiment
(World Scientific
, Singapore
, 1996
), pp. 233
–240
.© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.