In this paper, we propose three new types of the integrable nonlocal combined nonlinear Schrödinger–Gerdjikov–Ivanov (NLS-GI) models. By the Riemann–Hilbert approach, we discuss the Cauchy problem of the reverse-space-time nonlocal combined NLS-GI model with step-like initial data: u(z, 0) = o(1) for z → − and u(z, 0) = A + o(1) for z → +, where A is an arbitrary positive constant. First of all, we give an integrable nonlocal combined NLS-GI model and its Lax pair. Then, we consider the analytical and asymptotic behaviors, symmetries, and scattering matrix of the Jost solutions. Finally, we discuss the Cauchy problem for the nonlocal combined NLS-GI model with step-like initial data.

1.
G. P.
Agrawal
,
Nonlinear Fiber Optics
(
Academic
,
San Diego
,
1989
).
2.
D. J.
Benney
and
A. C.
Newell
, “
The propagation of nonlinear wave envelopes
,”
J. Math. Phys.
46
,
133
139
(
1967
).
3.
M. V.
Goldman
, “
Strong turbulence of plasma waves
,”
Rev. Mod. Phys.
56
,
709
735
(
1984
).
4.
M. J.
Ablowitz
,
G.
Biondini
, and
L. A.
Ostrovsky
, “
Optical solitons: Perspectives and applications
,”
Chaos: Interdiscip. J. Nonlinear Sci.
10
,
471
474
(
2000
).
5.
S. W.
Xu
and
J. S.
He
, “
The rogue wave and breather solution of the Gerdjikov-Ivanov equation
,”
J. Math. Phys.
53
,
063507
(
2012
).
6.
H. M.
Baskonus
,
M.
Younis
, and
M.
Bilal
, “
Modulation instability analysis and perturbed optical soliton and other solutions to the Gerdjikov-Ivanov equation in nonlinear optics
,”
Mod. Phys. Lett. B
34
,
2050404
(
2020
).
7.
Z. C.
Zhang
and
E. G.
Fan
, “
Inverse scattering transform for the Gerdjikov-Ivanov equation with nonzero boundary conditions
,”
Z. Angew. Math. Phys.
71
,
149
(
2020
).
8.
J. H.
Luo
and
E. G.
Fan
, “
Dbar-dressing method for the Gerdjikov-Ivanov equation with nonzero boundary conditions
,”
Appl. Math. Lett.
120
,
107297
(
2021
).
9.
L. J.
Guo
,
Y. S.
Zhang
,
S. W.
Xu
,
Z. W.
Wu
, and
J. S.
He
, “
The higher order rogue wave solutions of the Gerdjikov-Ivanov equation
,”
Phys. Scr.
89
,
035501
(
2014
).
10.
X.
Lv
,
W. X.
Ma
,
J.
Yu
,
F.
Lin
, and
C. M.
Khalique
, “
Envelope bright- and dark-soliton solutions for the Gerdjikov-Ivanov model
,”
Nonlinear Dyn.
82
,
1211
1220
(
2015
).
11.
Y. S.
Zhang
,
Y.
Cheng
, and
J. S.
He
, “
Riemann-Hilbert method and N-soliton for two-component Gerdjikov-Ivanov equation
,”
J. Nonlinear Math. Phys.
24
,
210
223
(
2017
).
12.
X. Y.
Yang
,
Z.
Zhao
, and
B.
Li
, “
Soliton molecules and dynamics of the smooth positon for the Gerdjikov-Ivanov equation
,”
Chin. Phys. B
29
,
100501
(
2020
).
13.
Y.
Hase
and
J.
Satsuma
, “
An N-soliton solution for the nonlinear Schrödinger equation coupled to the Boussinesq equation
,”
J. Phys. Soc. Jpn.
57
,
679
682
(
1988
).
14.
A. R.
Chowdhury
and
N. N.
Rao
, “
Painleve analysis and bäcklund transformations for coupled generalized Schrödinger Boussinesq system
,”
Chaos, Solitons Fractals
9
,
1747
1753
(
1998
).
15.
H.
Nie
,
L. P.
Lu
, and
X. G.
Geng
, “
Riemann–Hilbert approach for the combined nonlinear Schrödinger and Gerdjikov–Ivanov equation and its N-soliton solutions
,”
Mod. Phys. Lett. B
32
,
1850088
(
2018
).
16.
Y.
Li
,
L.
Zhang
,
B. B.
Hu
, and
R. Q.
Wang
, “
The initial-boundary value for the combined Schrödinger and Gerdjikov–Ivanov equation on the half-line via the Riemann-Hilbert approach
,”
Theor. Math. Phys.
209
,
1537
1551
(
2021
).
17.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Integrable nonlocal nonlinear Schrödinger equation
,”
Phys. Rev. Lett.
110
,
064105
(
2013
).
18.
Z. Y.
Yan
, “
Integrable PT-symmetric local and nonlocal vector nonlinear Schrödinger equations: A unified two-parameter model
,”
Appl. Math. Lett.
47
,
61
68
(
2015
).
19.
L. Y.
Ma
and
Z. N.
Zhu
, “
Nonlocal nonlinear Schrödinger equation and its discrete version: Soliton solutions and gauge equivalence
,”
J. Math. Phys.
57
,
083507
(
2016
).
20.
T. A.
Gadzhimuradov
and
A. M.
Agalarov
, “
Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation
,”
Phys. Rev. A
93
,
062124
(
2016
).
21.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Integrable nonlocal nonlinear equations
,”
Stud. Appl. Math.
139
,
7
59
(
2017
).
22.
M. J.
Ablowitz
,
B. F.
Feng
,
X. D.
Luo
, and
Z. H.
Musslimani
, “
Reverse space-time nonlocal Sine–Gordon/Sinh–Gordon equations with nonzero boundary conditions
,”
Stud. Appl. Math.
141
,
267
307
(
2018
).
23.
J. G.
Rao
,
Y.
Cheng
, and
J. S.
He
, “
Rational and semirational solutions of the nonlocal Davey–Stewartson equations
,”
Stud. Appl. Math.
139
,
568
598
(
2017
).
24.
J. L.
Ji
and
Z. N.
Zhu
, “
On a nonlocal modified Korteweg–de Vries equation: Integrability, Darboux transformation and soliton solutions
,”
Commun. Nonlinear Sci. Numer. Simul.
42
,
699
708
(
2017
).
25.
X. Y.
Tang
,
Z. F.
Liang
, and
X. Z.
Hao
, “
Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system
,”
Commun. Nonlinear Sci. Numer. Simul.
60
,
62
71
(
2018
).
26.
M.
Gürses
and
A.
Pekcan
, “
Nonlocal KdV equations
,”
Phys. Lett. A
384
,
126894
(
2020
).
27.
G. Q.
Zhang
and
Z. Y.
Yan
, “
Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions
,”
Physica D
402
,
132170
(
2020
).
28.
J.
Li
and
T. C.
Xia
, “
N-soliton solutions for the nonlocal Fokas-Lenells equation via RHP
,”
Appl. Math. Lett.
113
,
106850
(
2021
).
29.
J. H.
Luo
and
E. G.
Fan
, “
δ̄-dressing method for the nonlocal mKdV equation
,”
J. Geom. Phys.
177
,
104550
(
2022
).
30.
W. X.
Ma
, “
Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions
,”
J. Geom. Phys.
177
,
104522
(
2022
).
31.
A.
Silem
,
J.
Lin
, and
N.
Akhtar
, “
Nonautonomous dynamics of local and nonlocal Fokas-Lenells models
,”
J. Phys. A: Math. Theor.
56
(
36
),
365201
(
2023
).
32.
Y. S.
Zhang
and
S. W.
Xu
, “
The soliton solutions for the Wadati-Konno-Ichikawa equation
,”
Appl. Math. Lett.
99
,
105995
(
2020
).
33.
B. B.
Hu
,
J.
Lin
, and
L.
Zhang
, “
Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan-Porsezian-Daniel model
,”
Nonlinear Dyn.
107
,
2773
2785
(
2022
).
34.
B. F.
Feng
,
X. D.
Luo
,
M. J.
Ablowitz
, and
Z. H.
Musslimani
, “
General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions
,”
Nonlinearity
31
,
5385
5409
(
2018
).
35.
F. J.
He
,
E. G.
Fan
, and
J.
Xu
, “
Long-time asymptotics for the nonlocal mKdV equation
,”
Commun. Theor. Phys.
71
,
475
488
(
2019
).
36.
Y.
Rybalko
and
D.
Shepelsky
, “
Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation
,”
J. Math. Phys.
60
,
031504
(
2019
).
37.
Y.
Rybalko
and
D.
Shepelsky
, “
Curved wedges in the long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation
,”
Stud. Appl. Math.
147
,
872
903
(
2021
).
38.
Y.
Rybalko
and
D.
Shepelsky
, “
Long-time asymptotics for the nonlocal nonlinear Schrödinger equation with step-like initial data
,”
J. Differ. Equations
270
,
694
724
(
2021
).
39.
L. P.
Ai
and
J.
Xu
, “
On a Riemann-Hilbert problem for the Fokas-Lenells equation
,”
Appl. Math. Lett.
87
,
57
63
(
2019
).
40.
S. Y.
Chen
and
Z. Y.
Yan
, “
The Hirota equation: Darboux transform of the Riemann-Hilbert problem and higher-order rogue waves
,”
Appl. Math. Lett.
95
,
65
71
(
2019
).
41.
B. B.
Hu
,
L.
Zhang
,
T. C.
Xia
, and
N.
Zhang
, “
On the Riemann-Hilbert problem of the Kundu equation
,”
Appl. Math. Comput.
381
,
125262
(
2020
).
42.
B. B.
Hu
,
L.
Zhang
, and
N.
Zhang
, “
On the Riemann-Hilbert problem for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation
,”
J. Comput. Appl. Math.
390
,
113393
(
2021
).
43.
B. B.
Hu
,
J.
Lin
, and
L.
Zhang
, “
On the Riemann-Hilbert problem for the integrable three-coupled Hirota system with a 4 × 4 matrix Lax pair
,”
Appl. Math. Comput.
428
,
127202
(
2022
).
44.
B. B.
Hu
,
L.
Zhang
, and
J.
Lin
, “
The initial-boundary value problems of the new two-component generalized Sasa-Satsuma equation with a 4 × 4 matrix Lax pair
,”
Anal. Math. Phys.
12
,
109
(
2022
).
45.
Y.
Rybalko
and
D.
Shepelsky
, “
Riemann-Hilbert approach for the integrable nonlocal nonlinear Schrödinger equation with step-like initial data
,”
Visnyk V. N. Karazin Kharkiv Natl. Univ. Ser. Math., Appl. Math. Mech.
88
,
4
16
(
2018
).
46.
L. L.
Liu
and
W. G.
Zhang
, “
On a Riemann-Hilbert problem for the focusing nonlocal mKdV equation with step-like initial data
,”
Appl. Math. Lett.
116
,
107009
(
2021
).
47.
B. B.
Hu
,
Z. Y.
Shen
,
L.
Zhang
, and
F.
Fang
, “
Riemann-Hilbert approach to the focusing and defocusing nonlocal derivative nonlinear Schrödinger equation with step-like initial data
,”
Appl. Math. Lett.
148
,
108885
(
2024
).
48.
B. B.
Hu
,
Z. Y.
Shen
, and
L.
Zhang
, “
Nonlocal Kundu-Eckhaus equation: Integrability, Riemann-Hilbert approach and Cauchy problem with step-like initial data
,”
Lett. Math. Phys.
114
,
55
(
2024
).
49.
L.
Zhang
,
B. B.
Hu
, and
Z. Y.
Shen
, “
Riemann-Hilbert approach to the focusing and defocusing nonlocal complex modified Korteweg-de Vries equation with step-like initial data
,”
J. Math. Phys.
65
,
013507
(
2024
).
50.
Y.
Rybalko
and
D.
Shepelsky
, “
Asymptotic stage of modulation instability for the nonlocal nonlinear Schrödinger equation
,”
Physica D
428
,
133060
(
2021
).
You do not currently have access to this content.