We study semiclassical perturbations of single-degree-of-freedom Hamiltonian systems possessing hyperbolic saddles with homoclinic orbits, and provide a sufficient condition for the separatrices to split, using a Melnikov-type approach. The semiclassical systems give approximations of the expectation values of the positions and momenta to the semiclassical Schrödinger equations with Gaussian wave packets as the initial conditions. The occurrence of separatrix splitting explains a mechanism for the existence of trajectories to cross the separatrices on the classical phase plane in the expectation value dynamics. Such separatrix splitting does not occur in standard systems of Hagedorn and Heller for the semiclassical Gaussian wave packet dynamics as well as in the classical systems. We illustrate our theory for the potential of a simple pendulum and give numerical computations for the stable and unstable manifolds in the semiclassical system as well as solutions crossing the separatrices.

1.
Acosta-Humánez
,
P. B.
,
Lázaro
,
J. T.
,
Morales-Ruiz
,
J. J.
, and
Pantazi
,
C.
, “
Semiclassical quantification of some two degree of freedom potentials: A differential galois approach
,”
J. Math. Phys.
65
(
1
),
012106
(
2024
).
2.
Albeverio
,
S.
,
Gesztesy
,
F.
,
Hoegh-Krohn
,
R.
, and
Exner
,
P.
,
Solvable Models in Quantum Mechanics
(
AMS Chelsea Publishing
,
2005
).
3.
Arnold
,
V.
,
Mathematical Methods of Classical Mechanics
, 2nd ed. (
Springer
,
New York
,
1989
).
4.
Bouzouina
,
A.
and
Robert
,
D.
, “
Uniform semiclassical estimates for the propagation of quantum observables
,”
Duke Math. J.
111
(
2
),
223
252
(
2002
).
5.
Cartier
,
P.
and
DeWitt-Morette
,
C.
,
Functional Integration: Action and Symmetries
(
Cambridge University Press
,
Cambridge
,
2006
).
6.
Combescure
,
M.
and
Robert
,
D.
,
Coherent States and Applications in Mathematical Physics
(
Springer
,
Dordrecht
,
2012
).
7.
DeWitt-Morette
,
C.
, “
The semiclassical expansion
,”
Ann. Phys.
97
(
2
),
367
399
(
1976
).
8.
Doedel
,
E.
and
Oldeman
,
B.
,
AUTO-07P: Continuation and bifurcation software for ordinary differential equations
,
2012
available at http://cmvl.cs.concordia.ca/auto.
9.
Egorov
,
Y. V.
, “
The canonical transformations of pseudodifferential operators
,”
Uspekhi Mat. Nauk
24
(
5
),
235
236
(
1969
), https://www.mathnet.ru/eng/rm5554.
10.
Feynman
,
R. P.
and
Hibbs
,
A. R.
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
11.
Hagedorn
,
G. A.
, “
Semiclassical quantum mechanics. I. The → 0 limit for coherent states
,”
Commun. Math. Phys.
71
(
1
),
77
93
(
1980
).
12.
Hagedorn
,
G. A.
, “
Raising and lowering operators for semiclassical wave packets
,”
Ann. Phys.
269
(
1
),
77
104
(
1998
).
13.
van der Heijden
,
G.
and
Yagasaki
,
K.
, “
Nonintegrability of an extensible conducting rod in a uniform magnetic field
,”
J. Phys. A: Math. Theor.
44
,
495101
(
2011
).
14.
Heller
,
E. J.
, “
Time-dependent approach to semiclassical dynamics
,”
J. Chem. Phys.
62
(
4
),
1544
1555
(
1975
).
15.
Lasser
,
C.
and
Röblitz
,
S.
, “
Computing expectation values for molecular quantum dynamics
,”
SIAM J. Sci. Comput.
32
(
3
),
1465
1483
(
2010
).
16.
Lasser
,
C.
and
Lubich
,
C.
, “
Computing quantum dynamics in the semiclassical regime
,”
Acta Numer.
29
,
229
401
(
2020
).
17.
Lubich
,
C.
,
From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis
(
European Mathematical Society
,
Zürich, Switzerland
,
2008
).
18.
Miller
,
W. H.
, “
Classical S matrix: Numerical application to inelastic collisions
,”
J. Chem. Phys.
53
(
9
),
3578
3587
(
1970
).
19.
Miller
,
W. H.
, “
Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants
,”
J. Chem. Phys.
61
(
5
),
1823
1834
(
1974
).
20.
Miller
,
W. H.
, “
The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations
,”
J. Phys. Chem. A
105
(
13
),
2942
2955
(
2001
).
21.
Morales-Ruiz
,
J. J.
,
Differential Galois Theory and Non-Integrability of Hamiltonian Systems
(
Birkhäuser
,
Basel
,
1999
).
22.
Morales-Ruiz
,
J. J.
, “
A differential Galois approach to path integrals
,”
J. Math. Phys.
61
,
052103
(
2020
).
23.
Morales-Ruiz
,
J. J.
and
Ramis
,
J.-P.
, “
Galoisian obstructions to integrability of Hamiltonian systems
,”
Methods Appl. Anal.
8
,
33
96
(
2001
).
24.
Morette
,
C.
, “
On the definition and approximation of Feynman’s path integrals
,”
Phys. Rev.
81
(
5
),
848
852
(
1951
).
25.
Ohsawa
,
T.
, “
Approximation of semiclassical expectation values by symplectic Gaussian wave packet dynamics
,”
Lett. Math. Phys.
111
(
5
),
121
(
2021
).
26.
Ohsawa
,
T.
and
Leok
,
M.
, “
Symplectic semiclassical wave packet dynamics
,”
J. Phys. A: Math. Theor.
46
(
40
),
405201
(
2013
).
27.
Shibayama
,
M.
and
Yagasaki
,
K.
, “
Heteroclinic connections between triple collisions and relative periodic orbits in the isosceles three-body problem
,”
Nonlinearity
22
(
10
),
2377
2403
(
2009
).
28.
Wang
,
H.
,
Sun
,
X.
, and
Miller
,
W. H.
, “
Semiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems
,”
J. Chem. Phys.
108
(
23
),
9726
9736
(
1998
).
29.
Yagasaki
,
K.
, “
The method of Melnikov for perturbations of multi-degree-of-freedom Hamiltonian systems
,”
Nonlinearity
12
(
4
),
799
822
(
1999
).
30.
Yagasaki
,
K.
, “
Semiclassical perturbations of single-degree-of-freedom Hamiltonian systems II: Nonintegrability
,”
J. Math. Phys.
65
,
102707
(
2024
).
31.
Zworski
,
M.
,
Semiclassical Analysis
(
American Mathematical Society
,
Providence, RI
,
2012
).
You do not currently have access to this content.