We focus on the dynamics and Wong-Zakai approximation for a class of retarded partial differential equations subjected to multiplicative white noise. We show that when restricted to a local region and under certain conditions, there exists a unique global solution for the truncated system driven by either the white noise or the approximation noise. Such solution generates a random dynamical system, and the solutions of Wong-Zakai approximations are convergent to solutions of the stochastic retarded differential equation. We also show that there exist invariant manifolds for the truncated system driven by either the white noise or the approximation noise, which are then the local manifolds for the untruncated systems, and prove that such invariant manifolds of the Wong-Zakai approximations converge to those of the stochastic retarded differential equation.

1.
Arnold
,
L.
,
Random Dynamical Systems
(
Springer
,
New York
,
1998
).
2.
Boutet De Monvel
,
L.
,
Chueshov
,
I. D.
, and
Rezounenko
,
A. V.
, “
Inertial manifolds for retarded semilinear parabolic equations
,”
Nonlinear Anal.
34
,
907
925
(
1998
).
3.
Chueshov
,
I. D.
and
Scheutzow
,
M.
, “
Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations
,”
J. Dyn. Differ. Equations
13
,
355
380
(
2001
).
4.
Chueshov
,
I. D.
,
Scheutzow
,
M.
, and
Schmalfuss
,
B.
, “
Continuity properties of inertial manifolds for stochastic retarded semilinear parabolic equations
,” in
Interacting Stochastic Systems
(
Springer
,
Berlin, Heidelberg
,
2005
), pp.
355
377
.
5.
Castaing
,
C.
and
Valadier
,
M.
,
Convex Analysis and Measurable Multifunctions
,
Lecture Notes in Mathematics Vol. 580
(
Springer
,
Berlin, New York
,
1977
).
6.
Duan
,
J.
,
Lu
,
K.
, and
Schmalfuss
,
B.
, “
Invariant manifolds for stochastic partial differential equations
,”
Ann. Probab.
31
,
2109
2135
(
2003
).
7.
Hadamard
,
J.
, “
Sur l’iteration et les solutions asymptotiques des equations differentielles
,”
Bull. Soc. Math. Fr.
29
,
224
228
(
1901
).
8.
Henry
,
D.
,
Geometric Theory of Semilinear Parabolic Equations
(
Springer
,
2006
), Vol.
840
.
9.
Lu
,
K.
and
Wang
,
Q.
, “
Chaotic behavior in differential equations driven by a Brownian motion
,”
J. Differ. Equations
251
,
2853
2895
(
2011
).
10.
Lu
,
K.
and
Wang
,
B.
, “
Wong-Zakai approximations and long term behavior of stochastic partial differential equations
,”
J. Dyn. Differ. Equations
31
,
1341
1371
(
2017
).
11.
Lyapunov
,
A. M.
,
Problème Général de la Stabilité du Mouvement
(
Princeton University Press
,
1948
).
12.
Pazy
,
A.
,
Semigroups of Linear Operators and Applications to Partial Differential Equations
,
Applied Mathematical Sciences Vol. 44
(
Springer-Verlag
,
New York
,
1983
).
13.
Perron
,
O.
, “
Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen
,”
Math. Z.
29
,
129
160
(
1929
).
14.
Shen
,
J.
and
Lu
,
K.
, “
Wong-Zakai approximations and center manifolds of stochastic differential equations
,”
J. Differ. Equations
263
,
4929
4977
(
2017
).
15.
Shen
,
J.
,
Lu
,
K.
, and
Zhang
,
W.
, “
Heteroclinic chaotic behavior driven by a Brownian motion
,”
J. Differ. Equations
255
,
4185
4225
(
2013
).
16.
Shen
,
J.
,
Zhao
,
J.
,
Lu
,
K.
, and
Wang
,
B.
, “
The Wong–Zakai approximations of invariant manifolds and foliations for stochastic evolution equations
,”
J. Differ. Equations
266
,
4568
4623
(
2019
).
17.
Travis
,
C. C.
and
Webb
,
G. F.
, “
Partial differential equations with deviating arguments in the time variable
,”
J. Math. Anal. Appl.
56
,
397
409
(
1976
).
18.
Wang
,
X.
,
Lu
,
K.
, and
Wang
,
B.
, “
Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise
,”
J. Dyn. Differ. Equations
28
,
1309
1335
(
2016
).
19.
Wang
,
X.
,
Lu
,
K.
, and
Wang
,
B.
, “
Wong–Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains
,”
J. Differ. Equations
264
,
378
424
(
2018
).
20.
Wong
,
E.
and
Zakai
,
M.
, “
On the convergence of ordinary integrals to stochastic integrals
,”
Ann. Math. Stat.
36
,
1560
1564
(
1965
).
21.
Wong
,
E.
and
Zakai
,
M.
, “
On the relation between ordinary and stochastic differential equations
,”
Int. J. Eng. Sci.
3
,
213
229
(
1965
).
22.
Zhao
,
J.
,
Shen
,
J.
, and
Lu
,
K.
, “
Persistence of C1 inertial manifolds under small random perturbations
,”
J. Dyn. Differ. Equations
36
,
333
385
(
2024
).
23.
Zang
,
J.
,
Shen
,
J.
, and
Wang
,
X.
, “
Stationary approximations of inertial manifolds for stochastic retarded semiliear parabolic equations
,”
J. Math. Anal. Appl.
506
,
125668
(
2022
).
You do not currently have access to this content.