The traveling tube (TWT) design in a nutshell comprises of a pencil-like electron beam (e-beam) in vacuum interacting with guiding it slow-wave structure (SWS). In our prior studies the e-beam was represented by one-dimensional electron flow and SWS was represented by a transmission line (TL). We extend in this paper our previously constructed field theory for TWTs as well the celebrated Pierce theory by replacing there the standard TL with its generalization allowing for the low frequency cutoff. Both the standard TL and generalized transmission line (GTL) feature uniformly distributed shunt capacitance and serial inductance, but the GTL in addition to that has uniformly distributed serial capacitance. We remind the reader that the standard TL represents a waveguide operating at the so-called TEM mode with no low frequency cutoff. In contrast, the GTL represents a waveguide operating at the so-called TM mode featuring the low frequency cutoff. We develop all the details of the extended TWT field theory and using a particular choice of the TWT parameters we derive a physically appealing factorized form of the TWT dispersion relations. This form has two factors that represent exactly the dispersion functions of non-interacting GTL and the e-beam. We also find that the factorized dispersion relations comes with a number of interesting features including: (i) focus points that belong to each dispersion curve as TWT principle parameter varies; (ii) formation of “hybrid” branches of the TWT dispersion curves parts of which can be traced to non-interacting GTL and the e-beam.

1.
Adams
,
D.
and
Hedberg
,
L.
,
Function Spaces and Potential Theory
(
Springer
,
1999
).
2.
Arfken
,
G.
and
Weber
,
H.
,
Mathematical Methods for Physicists—A Comprehensive Guide
, 7th ed. (
Academic Press
,
2013
).
3.
Barker
,
R.
,
Booske
,
J.
,
Luhmann
,
N.
, and
Nusinovich
,
G.
,
Modern Microwave and Millimeter-Wave Power Electronics
(
Wiley
,
2005
).
4.
Briggs
,
R.
,
Electron-Stream Interaction with Plasmas
(
MIT Press
,
1964
).
5.
Benford
,
J.
,
Swegle
,
A.
, and
Schamiloglu
,
E.
,
High Power Microwaves
, 3rd ed. (
CRC Press
,
2016
).
6.
Branch
,
G. M.
and
Mihran
,
T.
, “
Plasma frequency reduction factors in electron beams
,”
IRE Trans. Electron Devices
2
,
3
11
(
1955
).
7.
Carter
,
R.
,
Microwave and RF Vacuum Electronic Power Sources
(
Cambridge University Press
,
2018
).
8.
Chipman
,
R.
,
Transmission Lines
(
McGraw-Hill Book Co.
,
1968
).
9.
Dautray
,
R.
and
Lions
,
J.
,
Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 1, Physical Origins and Classical Methods
(
Springer
,
2000
).
10.
Evans
,
L.
,
Partial Differential Equations
(
AMS
,
1998
).
11.
Figotin
,
A.
,
An Analytic Theory of Multi-Stream Electron Beams in Traveling Wave Tubes
(
World Scientific
,
2020
).
12.
Figotin
,
A.
, “
Exceptional points of degeneracy in traveling wave tubes
,”
J. Math. Phys.
62
,
082701
(
2021
).
13.
Figotin
,
A.
, “
Analytic theory of multicavity klystrons
,”
J. Math. Phys.
63
,
062703
(
2022
).
14.
Figotin
,
A.
, “
Analytic theory of coupled-cavity traveling wave tubes
,”
J. Math. Phys.
64
,
042703
(
2023
).
15.
Figotin
,
A.
and
Reyes
,
G.
, “
Multi-transmission-line-beam interactive system
,”
J. Math. Phys.
54
,
111901
(
2013
).
16.
Folland
,
G.
,
Fourier Analysis and its Applications
(
Princeton University Press
,
1992
).
17.
Folland
,
G.
,
Introduction to Partial Differential Equations
(
Brooks
,
1995
).
18.
Franceschetti
,
G.
,
Electromagnetics
(
Springer
,
1997
).
19.
Gilmour
,
A. S.
,
Principles of Klystrons, Traveling Wave Tubes, Magnetrons, Cross-Field Amplifiers, and Gyrotrons
(
Artech House
,
2011
).
20.
Gilmour
,
A.
,
Principles of Traveling Wave Tubes
(
Artech House
,
1994
).
21.
Kato
,
T.
,
Perturbation Theory for Linear Operators
(
Springer
,
1995
).
22.
Miano
,
G.
and
Maffucci
,
A.
,
Transmission Lines and Lumped Circuit
(
Academic Press
,
2001
).
23.
Milton
,
K.
and
Schwinger
,
J.
,
Electromagnetic Radiation: Variational Methods, Waveguides and Accelerators
(
Springer
,
2006
).
24.
Minenna
,
D. F. G.
,
Andre
,
F.
,
Elskens
,
Y.
,
Auboin
,
J.-F.
, and
Doveil
,
F.
, “
The traveling-wave tube in the history of telecommunication
,”
Eur. Phys. J. H
44
(
1
),
1
36
(
2019
).
25.
Pain
,
H.
,
The Physics of Vibrations and Waves
, 6th ed. (
Wiley
,
2005
).
26.
Pierce
,
J.
, “
Waves in electron streams and circuits
,”
Bell Syst. Tech. J.
30
,
626
651
(
1951
).
27.
Pierce
,
J.
,
Traveling-Wave Tubes
(
D. Van Nostrand
,
1950
).
28.
Schachter
,
L.
,
Beam-Wave Interaction in Periodic and Quasi-Periodic Structures
, 2nd ed. (
Springer
,
2011
).
29.
Schamiloglu
,
E.
and
Figotin
,
A.
, “
The field theory of collective Cherenkov radiation associated with electron beams
,”
Phys. Plasmas
31
,
023101
(
2024
).
30.
Simon
,
D. H.
et al, “
On the evaluation of Pierce parameters C and Q in a traveling wave tube
,”
Phys. Plasmas
24
,
033114
(
2017
).
31.
Sturrock
,
P. A.
, “
Kinematics of growing waves
,”
Phys. Rev.
112
(
5
),
1488
1503
(
1958
).
32.
Treves
,
F.
,
Basic Linear Partial Differential Equations
(
Academic Press
,
1975
).
33.
Tsimring
,
S.
,
Electron Beams and Microwave Vacuum Electronics
(
Wiley
,
2007
).
34.
Wiersig
,
J.
, “
Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection
,”
Phys. Rev. Lett.
112
,
203901
(
2014
).
35.
Wiersig
,
J.
, “
Sensors operating at exceptional points: General theory
,”
Phys. Rev. A
93
,
033809
(
2016
).
You do not currently have access to this content.